Abstract:
The present invention relates to a 5th-generation (5G) or pre-5G communication system to be provided in order to support a higher data transmission rate than a beyond 4th-generation (4G) communication system such as long term evolution (LTE). The present invention relates to a signal transmission method of a radio frequency (RF) processing device, the method comprising the steps of: generating a pulse signal including a control signal and a clock signal for obtaining synchronization with another RF processing device, which is connected through an interface; and transmitting, to the another RF processing device, at least one from among the pulse signal, a RF signal for communication with a base station, and a power signal for supplying power to the another RF processing device, wherein the clock signal and the control signal are assigned to different time units, and the pulse signal, the RF signal and the power signal are signals of different frequency bands.
Abstract:
The present invention relates to a 5th-generation (5G) or pre-5G communication system to be provided in order to support a higher data transmission rate than a beyond 4th-generation (4G) communication system such as long term evolution (LTE). The present invention relates to a signal transmission method of a radio frequency (RF) processing device, the method comprising the steps of: generating a pulse signal including a control signal and a clock signal for obtaining synchronization with another RF processing device, which is connected through an interface; and transmitting, to the another RF processing device, at least one from among the pulse signal, a RF signal for communication with a base station, and a power signal for supplying power to the another RF processing device, wherein the clock signal and the control signal are assigned to different time units, and the pulse signal, the RF signal and the power signal are signals of different frequency bands.
Abstract:
Disclosed is a power divider circuit providing a mutual inductance and including a first primary inducing element having a first terminal connected with a first output port and a second terminal connected with a second primary inducing element having a first terminal connected with a second output port and a second terminal connected with the first primary inducing element and magnetically and mutually coupled with the first primary inducing element, a sub inducing element having a first terminal connected with an input port and a second terminal connected with the second terminal of the first primary inducing element and the second terminal of the second primary inducing element, and an isolation network connected between the first output port and the second output port. The sub inducing element is magnetically and mutually coupled with each of the first primary inducing element and the second primary inducing element.
Abstract:
An apparatus and method for controlling power in a communication system are provided. The method includes amplifying an input signal by a second processor farther from an antenna than a first processor, and determining whether to enable or disable each of the first processor and the second processor based on results from the amplification by the second processor. Another method includes amplifying an input signal from an antenna by a second processor electrically farther from the antenna than a first processor, and determining whether to operate the first processor and the second processor based on a value related to a reception state for the amplified signal by the second processor.
Abstract:
An apparatus and method for controlling power in a communication system are provided. The method includes amplifying an input signal by a second processor farther from an antenna than a first processor, and determining whether to enable or disable each of the first processor and the second processor based on results from the amplification by the second processor. Another method includes amplifying an input signal from an antenna by a second processor electrically farther from the antenna than a first processor, and determining whether to operate the first processor and the second processor based on a value related to a reception state for the amplified signal by the second processor.