Abstract:
A flash memory device is provided. The flash memory device includes: a first memory cell; a second memory cell on the first memory cell; and a third memory cell between the first memory cell and the second memory cell. The first memory cell, the second memory cell and the third memory cell share a channel. The third memory cell is configured to block channel sharing between the first memory cell and the second memory cell based on a channel separation voltage provided in first to k-th program loops. The third memory cell is configured to connect the channel sharing between the first memory cell and the second memory cell based on a channel connection voltage provided to the third memory cell in a (k+1)-th program loop.
Abstract:
An electronic device and method for controlling an external device using a number are provided. The electronic device includes a processor configured to transmit an input number to a server over a mobile network, in response to a connection being input, receive an identifier of the external device, which is issued by the server, send a connection request to the external device over the mobile network using the received identifier of the external device, and control the external device by sending a control command to the external device, in response to receiving an indication regarding completion of access authentication from the external device, and a communication interface configured to perform communication with the external device and the server.
Abstract:
A method for controlling the transmission and reception of data among a plurality of devices in a communication system comprises the steps of: enabling a master device as one of the plurality of devices to determine a channel to be assigned to each slave device connected in series thereto; and transferring channel information of each determined slave device to the slave devices.
Abstract:
A flash memory device is provided. The flash memory device includes: a first memory cell; a second memory cell on the first memory cell; and a third memory cell between the first memory cell and the second memory cell. The first memory cell, the second memory cell and the third memory cell share a channel. The third memory cell is configured to block channel sharing between the first memory cell and the second memory cell based on a channel separation voltage provided in first to k-th program loops. The third memory cell is configured to connect the channel sharing between the first memory cell and the second memory cell based on a channel connection voltage provided to the third memory cell in a (k+1)-th program loop.
Abstract:
A method for controlling the transmission and reception of data among a plurality of devices in a communication system comprises the steps of: enabling a master device as one of the plurality of devices to determine a channel to be assigned to each slave device connected in series thereto; and transferring channel information of each determined slave device to the slave devices.
Abstract:
A method for sharing data in a transmitting-side electronic device communicating with a receiving-side electronic device is provided. The method includes connecting a voice call with the receiving-side electronic device; obtaining a sharing object to be shared with the receiving-side electronic device; and transmitting data corresponding to the sharing object to the receiving-side electronic device through a data session formed based on information related to the voice call.
Abstract:
A method for sharing data in a transmitting-side electronic device communicating with a receiving-side electronic device is provided. The method includes connecting a voice call with the receiving-side electronic device; obtaining a sharing object to be shared with the receiving-side electronic device; and transmitting data corresponding to the sharing object to the receiving-side electronic device through a data session formed based on information related to the voice call.
Abstract:
A nonvolatile memory device includes a memory cell array and a bad block remapping circuit. The memory cell array includes a first mat and a second mat that are paired with each other. The first mat includes a plurality of first memory blocks. The second mat includes a plurality of second memory blocks. A first selection memory block among the plurality of first memory blocks and a second selection memory block among the plurality of second memory blocks are accessed based on a first address. The bad block remapping circuit generates a first remapping address based on the first address when it is determined that the first selection memory block is defective. A first remapping memory block among the plurality of first memory blocks and the second selection memory block are accessed based on the first remapping address.
Abstract:
A method of operating a non-volatile memory device includes selecting a first select transistor from among a plurality of select transistors included in a NAND string, and performing a check operation on a first threshold voltage of the first select transistor. The check operation includes comparing the first threshold voltage with a first lower-limit reference voltage level, and performing a program operation on the first select transistor when the first threshold voltage is lower than the first lower-limit reference voltage level. When the first threshold voltage is equal to or higher than the first lower-limit reference voltage level, the check operation on the first threshold voltage is ended.
Abstract:
A method for sharing data in a transmitting-side electronic device communicating with a receiving-side electronic device is provided. The method includes connecting a voice call with the receiving-side electronic device; obtaining a sharing object to be shared with the receiving-side electronic device; and transmitting data corresponding to the sharing object to the receiving-side electronic device through a data session formed based on information related to the voice call.