Abstract:
Semiconductor devices are provided. The semiconductor device includes an active fin which extends along a first direction and has a protruding shape, a gate structure which is disposed on the active fin to extend along a second direction intersecting the first direction, and a spacer which is disposed on at least one side of the gate structure, wherein the gate structure includes a first area and a second area which is adjacent to the first area in the second direction, wherein a first width of the first area in the first direction is different from a second width of the second area in the first direction, and the spacer extends continuously along both the first area and the second area.
Abstract:
A semiconductor device includes a gate structure extending in a second direction on a substrate, a source/drain layer disposed on a portion of the substrate adjacent the gate structure in a first direction crossing the second direction, a first conductive contact plug on the gate structure, and a second contact plug structure disposed on the source/drain layer. The second contact plug structure includes a second conductive contact plug and an insulation pattern, and the second conductive contact plug and the insulation pattern are disposed in the second direction and contact each other. The first conductive contact plug and the insulation pattern are adjacent to each other in the first direction. The first and second conductive contact plugs are spaced apart from each other.
Abstract:
A semiconductor device includes a fin-type pattern including a first short side and a second short side opposed to each other, a first trench in contact with the first short side, a second trench in contact with the second short side, a first field insulating film in the first trench, the first field insulating film including a first portion and a second portion arranged sequentially from the first short side, and a height of the first portion being different from a height of the second portion, a second field insulating film in the second trench, and a first dummy gate on the first portion of the first field insulating film.
Abstract:
A semiconductor device includes a gate structure extending in a second direction on a substrate, a source/drain layer disposed on a portion of the substrate adjacent the gate structure in a first direction crossing the second direction, a first conductive contact plug on the gate structure, and a second contact plug structure disposed on the source/drain layer. The second contact plug structure includes a second conductive contact plug and an insulation pattern, and the second conductive contact plug and the insulation pattern are disposed in the second direction and contact each other. The first conductive contact plug and the insulation pattern are adjacent to each other in the first direction. The first and second conductive contact plugs are spaced apart from each other.
Abstract:
Semiconductor devices are provided. The semiconductor device includes an active fin which extends along a first direction and has a protruding shape, a gate structure which is disposed on the active fin to extend along a second direction intersecting the first direction, and a spacer which is disposed on at least one side of the gate structure, wherein the gate structure includes a first area and a second area which is adjacent to the first area in the second direction, wherein a first width of the first area in the first direction is different from a second width of the second area in the first direction, and the spacer extends continuously along both the first area and the second area.
Abstract:
A test pattern of a semiconductor device is provided, which includes first and second fins formed to project from a substrate and arranged to be spaced apart from each other, first and second gate structures formed to cross the first and second fins, respectively, a first source region and a first drain region arranged on the first fin on one side and the other side of the first gate structure, a second source region and a second drain region arranged on the second fin on one side and the other side of the second gate structure, a first conductive pattern connected to the first and second drain regions to apply a first voltage to the first and second drain regions and a second conductive pattern connecting the first source region and the second gate structure to each other.
Abstract:
A field effect transistor having at least one Ge nanorod and a method of manufacturing the field effect transistor are provided. The field effect transistor may include a gate insulation layer formed on a silicon substrate, at least one nanorod embedded in the gate insulation layer having both ends thereof exposed, a source electrode and a drain electrode connected to opposite sides of the at least one Ge nanorod, and a gate electrode formed on the gate insulation layer between the source electrode and the drain electrode.
Abstract:
A semiconductor device includes a substrate having a transistor area, a gate structure disposed on the transistor area of the substrate, a first interlayer insulating layer covering the gate structure, a blocking pattern disposed on the first interlayer insulating layer, and a jumper pattern disposed on the blocking pattern. The jumper pattern includes jumper contact plugs vertically penetrating the first interlayer insulating layer to be in contact with the substrate exposed at both sides of the gate structure, and a jumper section configured to electrically connect the jumper contact plugs.
Abstract:
A semiconductor device includes an interlayer dielectric layer on a substrate, the interlayer dielectric layer having an upper surface, a lower plug extending down into the interlayer dielectric layer from the upper surface of the interlayer dielectric layer, the lower plug having an upper surface, a first dielectric layer pattern on the upper surface of the lower plug, at least a portion of the first dielectric layer pattern being directly connected to the upper surface of the lower plug, a first metal electrode pattern on the first dielectric layer pattern, a first upper plug electrically connected to the first metal electrode pattern, and a second upper plug on the lower plug, the second upper plug being spaced apart from the first upper plug.
Abstract:
A semiconductor device includes a substrate having a transistor area, a gate structure disposed on the transistor area of the substrate, a first interlayer insulating layer covering the gate structure, a blocking pattern disposed on the first interlayer insulating layer, and a jumper pattern disposed on the blocking pattern. The jumper pattern includes jumper contact plugs vertically penetrating the first interlayer insulating layer to be in contact with the substrate exposed at both sides of the gate structure, and a jumper section configured to electrically connect the jumper contact plugs.