Abstract:
A method for forming a pattern of a semiconductor device and a semiconductor device formed using the same are provided. The method includes forming a buffer layer on a substrate, forming a channel layer on the buffer layer, forming support patterns penetrating the channel layer, and forming channel fin patterns and a buffer pattern by patterning the channel layer and the buffer layer. The channel layer includes a material of which a lattice constant is different from that of the buffer layer, and each of the channel fin patterns has both sidewalls that are in contact with the support patterns and are opposite to each other.
Abstract:
Provided is a simulation method performed by a process simulator, implemented with a recurrent neural network (RNN) including a plurality of process emulation cells, which are arranged in time series and configured to train and predict, based on a final target profile, a profile of each process step included in a semiconductor manufacturing process. The simulation method includes: receiving, at a first process emulation cell, a previous output profile provided at a previous process step, a target profile and process condition information of a current process step; and generating, at the first process emulation cell, a current output profile corresponding to the current process step, based on the target profile, the process condition information, and prior knowledge information, the prior knowledge information defining a time series causal relationship between the previous process step and the current process step.
Abstract:
Provided is a simulation method performed by a process simulator, implemented with a recurrent neural network (RNN) including a plurality of process emulation cells, which are arranged in time series and configured to train and predict, based on a final target profile, a profile of each process step included in a semiconductor manufacturing process. The simulation method includes: receiving, at a first process emulation cell, a previous output profile provided at a previous process step, a target profile and process condition information of a current process step; and generating, at the first process emulation cell, a current output profile corresponding to the current process step, based on the target profile, the process condition information, and prior knowledge information, the prior knowledge information defining a time series causal relationship between the previous process step and the current process step.
Abstract:
Provided is a simulation method performed by a process simulator, implemented with a recurrent neural network (RNN) including a plurality of process emulation cells, which are arranged in time series and configured to train and predict, based on a final target profile, a profile of each process step included in a semiconductor manufacturing process. The simulation method includes: receiving, at a first process emulation cell, a previous output profile provided at a previous process step, a target profile and process condition information of a current process step; and generating, at the first process emulation cell, a current output profile corresponding to the current process step, based on the target profile, the process condition information, and prior knowledge information, the prior knowledge information defining a time series causal relationship between the previous process step and the current process step.
Abstract:
A semiconductor device is provided. The semiconductor device includes a first substrate, an active region defined by an isolation film in the first substrate, an oxide semiconductor layer on the first substrate in the active region, and not comprising silicon, a recess inside the oxide semiconductor layer, and a gate structure filling the recess, comprising a gate electrode and a capping film on the gate electrode, and having an upper surface on a same plane as an upper surface of the active region.
Abstract:
Provided is a simulation method performed by a process simulator, implemented with a recurrent neural network (RNN) including a plurality of process emulation cells, which are arranged in time series and configured to train and predict, based on a final target profile, a profile of each process step included in a semiconductor manufacturing process. The simulation method includes: receiving, at a first process emulation cell, a previous output profile provided at a previous process step, a target profile and process condition information of a current process step; and generating, at the first process emulation cell, a current output profile corresponding to the current process step, based on the target profile, the process condition information, and prior knowledge information, the prior knowledge information defining a time series causal relationship between the previous process step and the current process step.