Abstract:
A semiconductor device includes a plurality of channel structures on a substrate, each channel structure extending in a first direction perpendicular to the substrate, and having a gate insulating layer and a channel layer, a common source extension region including a first semiconductor layer having an n-type conductivity between the substrate and the channel structures, a plurality of gate electrodes on the common source extension region and spaced apart from each other on a sidewall of each of the channel structures in the first direction, and a common source region on the substrate in contact with the common source extension region and including a second semiconductor layer having an n-type conductivity, wherein the gate insulating layer of each of the channel structures extends to cover an upper surface and at least a portion of a bottom surface of the common source extension region.
Abstract:
A semiconductor device includes a plurality of channel structures on a substrate, each channel structure extending in a first direction perpendicular to the substrate, and having a gate insulating layer and a channel layer, a common source extension region including a first semiconductor layer having an n-type conductivity between the substrate and the channel structures, a plurality of gate electrodes on the common source extension region and spaced apart from each other on a sidewall of each of the channel structures in the first direction, and a common source region on the substrate in contact with the common source extension region and including a second semiconductor layer having an n-type conductivity, wherein the gate insulating layer of each of the channel structures extends to cover an upper surface and at least a portion of a bottom surface of the common source extension region.
Abstract:
In one embodiment, the semiconductor device includes a stack of alternating interlayer insulating layers and conductive layers on a substrate. Each of the conductive layers extends in a first direction less than a previous one of the conductive layers to define a landing portion of the previous one of the conductive layers. An insulating plug is in one of the conductive layers under one of the landing portions, and a contact plug extends from an upper surface of the one of the landing portions.
Abstract:
Provided is a vertical non-volatile memory device having a metal source line. The vertical non-volatile memory device includes cell string units that are formed on first portions of a semiconductor substrate and are vertically arranged with respect to a surface of the semiconductor substrate, impurity regions formed on second portions of the semiconductor substrate between the cell string units, conductive lines formed on the impurity regions, and spacers that are formed on the sidewalls of the cell string units and insulate the conductive lines from the cells string units.