Abstract:
A phase-rotating phase locked loop (PLL) may include first and second loops that share a loop filter and a voltage controlled oscillator in order to perform the operation of a phase-rotating PLL, the first and second loops configured to activate in response to an enable signal. The PLL may further include a phase frequency detection controller configured to provide the enable signal to the first and second loops in response to a transition of a coarse signal that may be applied as a digital code.
Abstract:
A transmitter includes: a pulse amplitude modulation encoder that encodes serial data to multi-bit transmission data of a first data group and a second data group; a first driver that converts first multi-bit transmission data of the first data group to a first differential signal having a first voltage swing width; a second driver that converts second multi-bit transmission data of the second data group to a second differential signal having a second voltage swing width narrower than the first voltage swing width; a first voltage regulator that provides to the second driver a first low swing voltage for generating the second differential signal; a second voltage regulator that provides to the second driver a second low swing voltage less than the first low swing voltage; and a constant current load switch that provides a current path between the first and second voltage regulators depending on deactivation of the second driver.
Abstract:
A phase-rotating phase locked loop (PLL) may include first and second loops that share a loop filter and a voltage controlled oscillator in order to perform the operation of a phase-rotating PLL, the first and second loops configured to activate in response to an enable signal. The PLL may further include a phase frequency detection controller configured to provide the enable signal to the first and second loops in response to a transition of a coarse signal that may be applied as a digital code.
Abstract:
A transmitter includes: a pulse amplitude modulation encoder that encodes serial data to multi-bit transmission data of a first data group and a second data group; a first driver that converts first multi-bit transmission data of the first data group to a first differential signal having a first voltage swing width; a second driver that converts second multi-bit transmission data of the second data group to a second differential signal having a second voltage swing width narrower than the first voltage swing width; a first voltage regulator that provides to the second driver a first low swing voltage for generating the second differential signal; a second voltage regulator that provides to the second driver a second low swing voltage less than the first low swing voltage; and a constant current load switch that provides a current path between the first and second voltage regulators depending on deactivation of the second driver.