Abstract:
An image sensor includes a substrate including a first surface and a second surface facing the first surface, a first photodiode located in a first region of the substrate and generating photocharges from light incident on the first region, a second photodiode located in a second region of the substrate and generating photocharges from light incident on the second region, and an isolation structure defining the first region in which the first photodiode is located and the second region in which the second photodiode is located, and extending between the first photodiode and the second photodiode. An area of the second region is smaller than an area of the first region, a first end of the isolation structure is coplanar with the second surface, and the isolation structure extends in a vertical direction from the second surface of the substrate toward the first surface of the substrate.
Abstract:
An image sensor includes a plurality of first photodiodes included in a first area of a unit pixel, and configured to generate electric charges, a second photodiode included in a second area of the unit pixel, and configured to generate electric charges, a first microlens disposed above the first area, a second microlens disposed above the second area, a first floating diffusion region included in the first area, a second floating diffusion region included in the second area, a plurality of first transfer transistors configured to provide the electric charges generated by the plurality of first photodiodes to the first floating diffusion region, and a second transfer transistor configured to provide the electric charges generated by the second photodiode to the second floating diffusion region. A sum of light-receiving areas of the plurality of first photodiodes is greater than a light-receiving area of the second photodiode.
Abstract:
A depth sensor includes a first pixel including a plurality of first photo transistors each receiving a first photo gate signal, a second pixel including a plurality of second photo transistors each receiving a second photo gate signal, a third pixel including a plurality of third photo transistors each receiving a third photo gate signal, a fourth pixel including a plurality of fourth photo transistors each receiving a fourth photo gate signal, and a photoelectric conversion element shared by first to fourth photo transistors of the plurality of first to fourth photo transistors.
Abstract:
An image sensor is provided which includes a plurality of unit pixels, ones of which are configured to convert an input light signal into at least four frame signals. The image sensor also includes a signal processor that is configured to measure a distance from an object based on the at least four frame signals from one of the plurality of unit pixels.
Abstract:
An image sensor includes a plurality of first photodiodes included in a first area of a unit pixel, and configured to generate electric charges, a second photodiode included in a second area of the unit pixel, and configured to generate electric charges, a first microlens disposed above the first area, a second microlens disposed above the second area, a first floating diffusion region included in the first area, a second floating diffusion region included in the second area, a plurality of first transfer transistors configured to provide the electric charges generated by the plurality of first photodiodes to the first floating diffusion region, and a second transfer transistor configured to provide the electric charges generated by the second photodiode to the second floating diffusion region. A sum of light-receiving areas of the plurality of first photodiodes is greater than a light-receiving area of the second photodiode.
Abstract:
An image sensor includes a polarizer array and a depth pixel array. The polarizer array may include first to fourth unit pixels, which are arranged in a first direction and a second direction crossing each other, and may include polarization gratings respectively provided in the first to fourth unit pixels. The polarization gratings of the first to fourth unit pixels may have polarization directions different from each other. The depth pixel array may include depth pixels corresponding to the first to fourth unit pixels, respectively. Each of the depth pixels may include a photoelectric conversion device and first and second readout circuits, which are connected in common to the photoelectric conversion device.
Abstract:
An image sensor includes a substrate including a first surface and a second surface facing the first surface, a first photodiode located in a first region of the substrate and generating photocharges from light incident on the first region, a second photodiode located in a second region of the substrate and generating photocharges from light incident on the second region, and an isolation structure defining the first region in which the first photodiode is located and the second region in which the second photodiode is located, and extending between the first photodiode and the second photodiode. An area of the second region is smaller than an area of the first region, a first end of the isolation structure is coplanar with the second surface, and the isolation structure extends in a vertical direction from the second surface of the substrate toward the first surface of the substrate.
Abstract:
An image sensor includes a substrate including a first surface and a second surface facing the first surface, a first photodiode located in a first region of the substrate and generating photocharges from light incident on the first region, a second photodiode located in a second region of the substrate and generating photocharges from light incident on the second region, and an isolation structure defining the first region in which the first photodiode is located and the second region in which the second photodiode is located, and extending between the first photodiode and the second photodiode. An area of the second region is smaller than an area of the first region, a first end of the isolation structure is coplanar with the second surface, and the isolation structure extends in a vertical direction from the second surface of the substrate toward the first surface of the substrate.
Abstract:
An image sensor is provided which includes a plurality of unit pixels, ones of which are configured to convert an input light signal into at least four frame signals. The image sensor also includes a signal processor that is configured to measure a distance from an object based on the at least four frame signals from one of the plurality of unit pixels.
Abstract:
A depth sensor includes a first pixel including a plurality of first photo transistors each receiving a first photo gate signal, a second pixel including a plurality of second photo transistors each receiving a second photo gate signal, a third pixel including a plurality of third photo transistors each receiving a third photo gate signal, a fourth pixel including a plurality of fourth photo transistors each receiving a fourth photo gate signal, and a photoelectric conversion element shared by first to fourth photo transistors of the plurality of first to fourth photo transistors.