Abstract:
An organic image sensor includes a first organic photoelectric conversion pixel circuit on an active region of a substrate and a second organic photoelectric conversion pixel circuit on an optical black region of the substrate. The first organic photoelectric conversion pixel circuit includes a first organic photoelectric conversion element configured to generate charges responding to incident light and a first readout circuit configured to receive a first input signal including the charges generated in the first organic photoelectric conversion element. The second organic photoelectric conversion pixel circuit includes a second organic photoelectric conversion element and a second readout circuit configured to receive a second input signal generated irrespective of the incident light.
Abstract:
An image sensor includes a photoelectric conversion unit, a signal generation unit, and a feedback unit. The photoelectric conversion unit is formed above a substrate and detects incident light to generate photo-charges based on a drive voltage. The signal generation unit is formed on the substrate and generates an analog signal based on the photo-charges. The feedback unit generates the drive voltage based on an amount of the photo-charges generated from the photoelectric conversion unit. The image sensor may perform a wide dynamic range (WDR) function.
Abstract:
An image sensor includes a semiconductor layer, an organic photoelectric conversion portion disposed on an upper surface of the semiconductor layer and that converts a color component of incident light into a corresponding electrical signal, a transistor layer disposed on a lower surface of the semiconductor layer and including a pixel circuit that receives the electrical signal, and penetration wiring that laterally penetrates a side surface of the semiconductor layer between the upper and lower surfaces and that electrically connects the organic photoelectric conversion portion with the pixel circuit to communicate the electrical signal.
Abstract:
An organic image sensor includes a first organic photoelectric conversion pixel circuit on an active region of a substrate and a second organic photoelectric conversion pixel circuit on an optical black region of the substrate. The first organic photoelectric conversion pixel circuit includes a first organic photoelectric conversion element configured to generate charges responding to incident light and a first readout circuit configured to receive a first input signal including the charges generated in the first organic photoelectric conversion element. The second organic photoelectric conversion pixel circuit includes a second organic photoelectric conversion element and a second readout circuit configured to receive a second input signal generated irrespective of the incident light.
Abstract:
A binary complementary metal-oxide-semiconductor (CMOS) image sensor includes a pixel array and a readout circuit. The pixel array includes at least one pixel having a plurality of sub-pixels. The readout circuit is configured to quantize a pixel signal output from the pixel using a reference signal. The pixel signal corresponds to sub-pixel signals output from sub-pixels, from among the plurality of sub-pixels, activated in response to incident light.
Abstract:
An image sensor includes a photoelectric conversion unit, a signal generation unit, and a feedback unit. The photoelectric conversion unit is formed above a substrate and detects incident light to generate photo-charges based on a drive voltage. The signal generation unit is formed on the substrate and generates an analog signal based on the photo-charges. The feedback unit generates the drive voltage based on an amount of the photo-charges generated from the photoelectric conversion unit. The image sensor may perform a wide dynamic range (WDR) function.