Abstract:
A substrate processing apparatus includes a chamber providing a space in which a substrate is processed, a first substrate support within the chamber and configured to support the substrate when the substrate is loaded into chamber, a second substrate support within the chamber and configured to support the substrate in a height greater than the height in which the first substrate supports the substrate, a first supply port through which a supercritical fluid is supplied to a first space under the substrate of a chamber space, a second supply port through which the supercritical fluid is supplied to a second space above the substrate of the chamber space, and an exhaust port through which the supercritical fluid is exhausted from the chamber.
Abstract:
A substrate processing apparatus includes a chamber providing a space in which a substrate is processed, a first substrate support within the chamber and configured to support the substrate when the substrate is loaded into chamber, a second substrate support within the chamber and configured to support the substrate in a height greater than the height in which the first substrate supports the substrate, a first supply port through which a supercritical fluid is supplied to a first space under the substrate of a chamber space, a second supply port through which the supercritical fluid is supplied to a second space above the substrate of the chamber space, and an exhaust port through which the supercritical fluid is exhausted from the chamber.
Abstract:
Provided in a semiconductor device including a substrate, an active region upwardly protruding from the substrate, a plurality of active fins upwardly protruding from the active region and extending in a first direction parallel to an upper surface of the substrate, the plurality of active fins being provided in a second direction that is parallel to the upper surface of the substrate and intersects with the first direction, and an isolation structure provided on the substrate, the isolation structure covering a sidewall of the active region and a lower portion of a sidewall of each of the plurality of active fins, wherein a first sidewall of the active region adjacent to a first active fin among the plurality of active fins has a staircase shape, the first active fin being provided on a first edge of the active region in the second direction.
Abstract:
Provided in a semiconductor device including a substrate, an active region upwardly protruding from the substrate, a plurality of active fins upwardly protruding from the active region and extending in a first direction parallel to an upper surface of the substrate, the plurality of active fins being provided in a second direction that is parallel to the upper surface of the substrate and intersects with the first direction, and an isolation structure provided on the substrate, the isolation structure covering a sidewall of the active region and a lower portion of a sidewall of each of the plurality of active fins, wherein a first sidewall of the active region adjacent to a first active fin among the plurality of active fins has a staircase shape, the first active fin being provided on a first edge of the active region in the second direction.
Abstract:
A mask for photolithography and methods of manufacturing a mask and a semiconductor device are provided. The method of manufacturing a mask may comprise providing a substrate, forming a phase shift material layer on the substrate, forming a light blocking layer on the phase shift material layer, and forming a main pattern and a sub pattern on the substrate by patterning the phase shift material layer and the light blocking layer. The light blocking layer may be removed on the main pattern left on the light blocking layer remaining on the sub pattern. A semiconductor device may be manufactured using the mask to form a photoresist pattern on a semiconductor wafer. The pattern of the photoresist may be used to etch an object layer of the semiconductor wafer.