Abstract:
The present disclosure provides a micro-light-emitting diode display apparatus and a method of manufacturing the same. Provided is a micro-light-emitting diode (LED) display apparatus including a plurality of pixels, the micro-LED display apparatus including a driving circuit substrate, a first electrode provided on the driving circuit substrate, one or more microlight-emitting diodes (LEDs) provided on the first electrode, an insulating layer provided on the one or more micro-LEDs, a via pattern provided in the insulating layer, electrical contacts provided in the via pattern, and a second electrode provided on the electrical contacts, wherein the via pattern exposes a portion of the one or more micro-LEDs.
Abstract:
Provided is a light-emitting device including a body including a first semiconductor layer, an active layer, and a second semiconductor layer, a first electrode and a second electrode provided on a first surface of the body, the first electrode and the second electrode being in contact with the first semiconductor layer and the second semiconductor layer, respectively, and a third electrode and a fourth electrode provided on a second surface of the body, the third electrode and the fourth electrode being in contact with the first semiconductor layer and the second semiconductor layer, respectively.
Abstract:
A touch-fingerprint complex sensor is provided for detecting a touch and a fingerprint of a user, using a touch pad including a touch region and a fingerprint recognizing region. The touch-fingerprint complex sensor includes a plurality of first electrodes disposed on a substrate, and arranged in parallel in a first direction, a plurality of second electrodes disposed on the substrate, and arranged in parallel in a second direction crossing the first direction, and an insulating layer disposed between the plurality of first electrodes and the plurality of second electrodes. A cross-sectional distance between the plurality of first electrodes and the plurality of second electrodes at intersections of the plurality of first electrodes and the plurality of second electrodes in the touch region excluding the fingerprint recognizing region is greater than that at intersections of the plurality of first electrodes and the plurality of second electrodes in the fingerprint recognizing region.
Abstract:
Provided are a transparent fingerprint recognition sensor and a touch screen device including the transparent fingerprint recognition sensor. The transparent fingerprint recognition sensor includes: a substrate; a plurality of first electrodes disposed on the substrate in a sensing area; an insulating layer disposed on the substrate and covering the plurality of first electrodes; a plurality of second electrodes disposed within the insulating layer in the sensing area; a plurality of first signal lines disposed within the insulating layer in the bezel area; and a plurality of second signal lines disposed on a top surface of the insulating layer, in the bezel area.
Abstract:
A directional backlight unit, a three-dimensional (3D) image display apparatus, and a 3D image displaying method are provided. The directional backlight unit includes a light guide plate having an emission surface on which a plurality of grating elements including first and second groups of grating elements are provided. The plurality of grating elements are arranged such that light beams emitted from the first and second groups of grating elements commonly propagate through a plurality of pixel points and respectively form first and second groups of view points of which corresponding regions do not overlap with each other.
Abstract:
A backlight unit using a micro optical switch and a three-dimensional (3D) image display device are provided. The backlight unit includes a light source configured to irradiate light, a light guide plate configured to guide the irradiated light, an optical switch array including micro optical switches disposed above the light guide plate for each of cells of the backlight unit, and a lens array disposed above and corresponding to the optical switch array. Each of the micro optical switches includes a substrate, a first electrode layer disposed on the substrate and including first holes, and a second electrode layer spaced apart from the first electrode layer and including second holes not facing the first holes.
Abstract:
Provided are capacitive micromachined ultrasonic transducer (CMUT) modules. A CMUT module includes a CMUT chip which includes a plurality of first electrode pads on a first surface thereof; a flexible printed circuit (FPC) which is disposed on the first surface of the CMUT chip, the FPC including a plurality of first holes which are configured to expose the plurality of first electrode pads; a plurality of second electrode pads formed on the FPC so as to correspond to the plurality of first electrode pads; and a plurality of wires which connect each respective one of the plurality of first electrode pads to the corresponding one of the plurality of second electrode pads.
Abstract:
A semiconductor device may include: a semiconductor chip may include a heat radiation part; a pressure chamber formed on the heat radiation part, wherein the pressure chamber is configured to contain coolant such that an internal pressure in the pressure chamber increases as the coolant absorbs heat from the heat radiation part, and the coolant is ejected in a first direction away from the heat radiation part as the internal pressure of the pressure chamber increases; and a cooling channel providing a flow path configured such that the coolant ejected from the pressure chamber flows through the flow path and back into the pressure chamber.
Abstract:
A semiconductor device includes a semiconductor chip including a semiconductor integrated circuit, and a cooling channel including at least a first portion that is inside the semiconductor chip, a wall surface including a fine pattern configured to generate a capillary force that causes a liquid coolant to flow in the cooling channel, a liquid channel area in a first area of the cooling channel where the fine pattern is formed and configured to pass the liquid coolant, and a gas channel area in a second area of the cooling channel where the fine pattern is not formed and configured to pass a gaseous coolant.
Abstract:
Disclosed are a method of transferring semiconductor chips. The method may include providing a first substrate, adhering a support substrate to the first substrate, supplying and aligning a plurality of semiconductor chips, partially adhering a second substrate to a first surface of the first substrate, separating the support substrate from the first substrate, and adhering the plurality of semiconductor chips to the second substrate by supplying a fluid to a periphery of a second surface of the first substrate and applying a pressure to the second surface.