Abstract:
A vertical memory device may include a plurality of word lines spaced apart in a first direction, each extending in a second direction perpendicular to the first direction and having a first width in a third direction perpendicular to the first and second directions, a dummy word line over an uppermost word line, including an opening and having a portion thereof with the first width in the third direction, a first string selection line (SSL) and a second string selection line (SSL) over the dummy word line, the first and second SSLs being at substantially the same level along the first direction, each of the first and second SSLs having a second width less than the first width in the third direction, and a plurality of vertical channel structures, each through the word lines, the dummy word line, and one of the first and second SSLs.
Abstract:
Step shape pad structure and wiring structure in vertical type semiconductor device are include a first conductive line having a first line shape and including first pad regions at an upper surface of an edge portion, and a second conductive line having s second line shape and being spaced apart from the first conductive line and provided on the first conductive line. An end portion of the first conductive line is extended to a first position. Second pad regions are included on an upper surface of an edge portion of the second conductive line. An end portion of the second conductive line is extended to the first position. The second conductive line includes a dent portion at a facing portion to the first pad regions in a vertical direction to expose the first pad regions. The pad structure may be used in a vertical type nonvolatile memory device.
Abstract:
In an integrated circuit device and method of manufacturing the same, a resistor pattern is positioned on a device isolation layer of a substrate. The resistor pattern includes a resistor body positioned in a recess portion of the device isolation layer and a connector making contact with the resistor body and positioned on the device isolation layer around the recess portion. The connector has a metal silicide pattern having electric resistance lower than that of the resistor body at an upper portion. A gate pattern is positioned on the active region of the substrate and includes the metal silicide pattern at an upper portion. A resistor interconnection is provided to make contact with the connector of the resistor pattern. A contact resistance between the connector and the resistor interconnection is reduced.