Abstract:
Disclosed is an electrode active material including nanostructures including boron-doped alumina. An electrode including the nanostructures, an energy storage device including the electrode, and a method of preparing the electrode active material are also disclosed.
Abstract:
An anode active material includes: a core including a metal or a metalloid that can incorporate and deincorporate lithium ions; and a plurality of coating layers on a surface of the core, each coating layer including a metal oxide, an amorphous carbonaceous material, or combination thereof. Also, a lithium battery including the anode active material, and a method of preparing the anode active material.
Abstract:
A cell structure for a secondary battery includes an electrode assembly including a plurality of electrodes, a plurality of electrode tabs extending from the electrodes to an outside of the electrode assembly, and a plurality of lead tabs electrically connected to the electrode tabs and contacting the electrode assembly. In the cell structure, a part of each of the lead tabs is folded, and the electrode tabs are inserted into the folded part of each of the lead tabs.
Abstract:
A hard coating film comprising a cured (meth)acrylate-based resin having a water contact angle of 40° or less and a pencil hardness of 6H or greater at a 1 kilogram load, a hard coating composition used for the formation of the hard coating film, a method of forming the hard coating film, a laminate including the hard coating film, and an article including the laminate.
Abstract:
A polymer electrolyte including a copolymer represented by Formula 1; and a lithium salt: wherein, in Formula 1, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, R13, R14, R15, R16, R17, L1, n1, x, y, and z are as disclosed herein.
Abstract:
A redox flow battery. A metal-ligand coordination compound including an aromatic ligand that contains an electron withdrawing group is used as the catholyte and/or the anolyte so that a redox flow battery having high energy density and excellent charge/discharge efficiency may be provided.
Abstract:
An electrode active material including an ordered mesoporous metal oxide; and at least one conductive carbon material disposed in a pore of the ordered mesoporous metal oxide. Also, an electrode including the electrode active material, and a lithium battery including the electrode.