Abstract:
An electronic device includes a first conductive plate, a second conductive plate that is spaced from the first conductive plate and is disposed parallel to the first conductive plate, a conductive element that is disposed in a space between the first conductive plate and the second conductive plate, a wireless communication circuit that is electrically connected with the first conductive plate and the conductive element, and a printed circuit board that is coupled with at least one side of the first conductive plate, at least one side of the second conductive plate, and one end of the conductive element. The wireless communication circuit is configured to transmit/receive a first radio frequency (RF) signal having a vertical polarization characteristic using the first conductive plate and the second conductive plate and to transmit/receive a second RF signal having a horizontal polarization characteristic using the conductive element.
Abstract:
An antenna is described including a slot formed in a cavity, a substrate configured to cover a portion of the cavity and the slot, and a first port and a second port configured to supply power to the antenna using a first feeding line and a second feeding line. Each of the feeding line and the second feeding line is connected to the slot in a vertical direction and disposed to be separate from one another. A first input impedance of the antenna from the first port differs from a second input impedance of the antenna from the second port.
Abstract:
An electronic device according to an embodiment of the present invention may comprise: a housing having an opening formed therein; a printed circuit board (PCB) arranged inside the housing; an insulating member coupled to the PCB; a first radiator formed on the insulating member; a camera electrically connected to the PCB so as to take an image through the opening; a decoration surrounding the opening; a second radiator comprising at least a part of the decoration; and a communication circuit for feeding the first radiator.
Abstract:
An electronic device includes a housing that includes a first plate, a second plate facing a direction opposite the first plate, and a side member surrounding a space between the first plate and the second plate, an antenna structure that includes a plurality of dielectric layers perpendicular to the side member and parallel to the first plate, a first array of conductive plates aligned in a first direction perpendicular to the first plate at a first dielectric layer of the dielectric layers, a second array of conductive plates spaced from the first array and aligned in the first direction at the first dielectric layer, wherein the second array is farther from the first plate than the first array, at least one ground plane positioned on at least one of the dielectric layers and interposed between the first array and the second array, when viewed from above the side member, and a wireless communication circuit electrically connected to the first array and the second array and configured to transmit and/or receive a signal having a frequency in a range of 20 GHz to 100 GHz.
Abstract:
An antenna device is provided and includes a plurality of antenna radiators arranged in an array, a ground member in operable communication with the plurality of antenna radiators, a plurality of conductive cells arranged on the plurality of antenna radiators, and a plurality of feeding lines electrically connected to the plurality of antenna radiators.
Abstract:
An antenna assembly in a vehicle is provided. The antenna assembly includes a first plane including a first edge and a second edge extending in parallel to each other in a first direction, a second plane spaced apart from the first plane that overlaps the first plane and including a third edge extending along the first edge, and a fourth edge extending along the second edge, a non-conductive layer interposed between the first plane and the second plane, and a plurality of wireless communication circuits electrically connected to the antenna assembly, wherein the first conductive pattern and the second conductive pattern are positioned diagonally at opposing corners with each other when viewed from above the first plane, and wherein the third conductive pattern and the fourth conductive pattern are positioned diagonally against each other without overlapping with the first and second conductive patterns, when viewed from above the first plane.
Abstract:
A wearable device mountable on a user's wrist is provided. The wearable device includes a housing having a metal structure, a display disposed in the housing and including a metal layer, the metal layer being disposed so as to be surrounded by the metal structure and to be spaced apart by a gap, a printed circuit board (PCB) disposed in the housing and including a ground area, and a control circuit disposed on the PCB and feeding a first point of the metal structure. Here, the metal layer is electrically connected with the ground area of the PCB at a second point spaced apart by an angle with respect to the first point.
Abstract:
An electronic device is provided. The electronic device includes an outer housing having a first conductive structure, a display adapted to expose at least a portion of the display through the first surface of the outer housing, and a printed circuit board (PCB) electrically connected to the display, where the first conductive structure includes a first point connected to a feeder of the PCB and a second point connected to a ground part of the PCB, and where the display includes a second conductive structure electrically connected to the PCB.