Abstract:
A three-dimensional semiconductor device includes an upper structure on a lower structure, the upper structure including conductive patterns, a semiconductor pattern connected to the lower structure through the upper structure, and an insulating spacer between the semiconductor pattern and the upper structure, a bottom surface of the insulating spacer being positioned at a vertical level equivalent to or higher than an uppermost surface of the lower structure.
Abstract:
A three-dimensional semiconductor device includes an upper structure on a lower structure, the upper structure including conductive patterns, a semiconductor pattern connected to the lower structure through the upper structure, and an insulating spacer between the semiconductor pattern and the upper structure, a bottom surface of the insulating spacer being positioned at a vertical level equivalent to or higher than an uppermost surface of the lower structure.
Abstract:
Three-dimensional semiconductor devices are provided. The three-dimensional semiconductor device includes a substrate, a buffer layer on the substrate. The buffer layer includes a material having an etching selectivity relative to that of the substrate. A multi-layer stack including alternating insulation patterns and conductive patterns is provided on the buffer layer opposite the substrate. One or more active patterns respectively extend through the alternating insulation patterns and conductive patterns of the multi-layer stack and into the buffer layer. Related fabrication methods are also discussed.
Abstract:
In a method of manufacturing a vertical semiconductor device, an insulation layer and a sacrificial layer are alternatively and repeatedly formed on a substrate to define a structure. The structure is etched to form a hole therethrough that exposes the substrate. A first semiconductor pattern is formed in a lower portion of the hole, and a blocking pattern, a charge storage pattern, a tunnel insulation pattern and a first channel pattern are formed on a sidewall of the hole. A second channel pattern is formed on the first channel pattern and the semiconductor pattern, and a second semiconductor pattern is formed on a portion of the second channel pattern on the semiconductor pattern to define an upper channel pattern including the second channel pattern and the second semiconductor pattern. The sacrificial layers are replaced with a plurality of gates, respectively, including a conductive material.
Abstract:
A three-dimensional semiconductor device includes an upper structure on a lower structure, the upper structure including conductive patterns, a semiconductor pattern connected to the lower structure through the upper structure, and an insulating spacer between the semiconductor pattern and the upper structure, a bottom surface of the insulating spacer being positioned at a vertical level equivalent to or higher than an uppermost surface of the lower structure.
Abstract:
A 3D semiconductor device includes an electrode structure has electrodes stacked on a substrate, semiconductor patterns penetrating the electrode structure, charge storing patterns interposed between the semiconductor patterns and the electrode structure, and blocking insulating patterns interposed between the charge storing patterns and the electrode structure. Each of the blocking insulating patterns surrounds the semiconductor patterns, and the charge storing patterns are horizontally spaced from each other and configured in such a way as to each be disposed around a respective one of the semiconductor patterns. Also, each of the charge storing patterns includes a plurality of horizontal segments, each interposed between vertically adjacent ones of the electrodes.
Abstract:
A 3D semiconductor device includes an electrode structure has electrodes stacked on a substrate, semiconductor patterns penetrating the electrode structure, charge storing patterns interposed between the semiconductor patterns and the electrode structure, and blocking insulating patterns interposed between the charge storing patterns and the electrode structure. Each of the blocking insulating patterns surrounds the semiconductor patterns, and the charge storing patterns are horizontally spaced from each other and configured in such a way as to each be disposed around a respective one of the semiconductor patterns. Also, each of the charge storing patterns includes a plurality of horizontal segments, each interposed between vertically adjacent ones of the electrodes.
Abstract:
Three-dimensional semiconductor devices are provided. The three-dimensional semiconductor device includes a substrate, a buffer layer on the substrate. The buffer layer includes a material having an etching selectivity relative to that of the substrate. A multi-layer stack including alternating insulation patterns and conductive patterns is provided on the buffer layer opposite the substrate. One or more active patterns respectively extend through the alternating insulation patterns and conductive patterns of the multi-layer stack and into the buffer layer. Related fabrication methods are also discussed.
Abstract:
A three-dimensional semiconductor device includes an upper structure on a lower structure, the upper structure including conductive patterns, a semiconductor pattern connected to the lower structure through the upper structure, and an insulating spacer between the semiconductor pattern and the upper structure, a bottom surface of the insulating spacer being positioned at a vertical level equivalent to or higher than an uppermost surface of the lower structure.
Abstract:
Provided are three-dimensional semiconductor devices. A device includes an electrode structure including conductive patterns sequentially stacked on a substrate, a semiconductor pattern penetrating the electrode structure and including channel regions adjacent to the conductive patterns and vertical adjacent regions between the channel regions, and a semiconductor connecting layer extending from an outer sidewall of the semiconductor pattern to connect the semiconductor pattern to the substrate.