Abstract:
Disclosed is a 5G or pre-5G communication system to be provided for supporting a data transmission rate higher than that of a 4G communication system such as LTE. A method for cancelling self-interference in a full-duplex communication system is provided. The method comprises the steps of: cancelling cancellable self-interference components through an analog interference cancellation circuit, and estimating a channel state of an uplink channel and a channel state of a downlink channel on the basis of remaining residual self-interference components; estimating a channel capacity for each of possible beam combinations on the basis of the estimated uplink channel state and downlink channel state; selecting the beam combination having the largest channel capacity from among the possible beam combinations; and cancelling self-interference from a received signal on the basis of the selected beam combination.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). Provided is an operation method of a base station in a wireless communication system. The method comprises: receiving, from a terminal, at least one piece of information among channel quality information on a resource region allocated to the terminal and non-Gaussian information on a nulling region corresponding to the resource region; and determining a modulation order for the terminal, a code rate, a ratio of the resource region to the nulling region based on the channel quality information and the non-Gaussian information.
Abstract:
A method for decoding a non-binary Low Density Parity Check (LDPC) code by a decoding apparatus in a communication system is provided. The method includes selecting a predetermined number of symbol messages from among received symbol messages, performing a variable node update process on the selected symbol messages to generate variable node updated symbol messages, performing a check node update process on the variable node updated symbol messages, and performing a decoding operation based on the result of the variable node update process and the check node update process, wherein the performing of the check node update process includes generating an intermediate message for the variable node updated symbol messages using symbol messages which are selected based on reliability, and generating an output message of each edge between a variable node and a check node.
Abstract:
A method of operating a base station in a wireless communication system supporting Frequency-Quadrature Amplitude Modulation (FQAM) and Multi-Tone FQAM (MT-FQAM) is provided. The method includes determining a modulation scheme of data to be transmitted, and modulating the data according to the determined modulation scheme, wherein if at least one resource block is included in the data and if the at least one resource block is mapped to at least one tone in a distributed manner, the MT-FQAM scheme is selected, or if one resource block is included in the data and if the one resource block is mapped to at least one tone in a continuous manner, the FQAM scheme is selected, or if multiple resource blocks are included in the data and if the multiple resource blocks are mapped to at least one tone in a continuous manner, the MT-FQAM scheme is selected.
Abstract:
A method for transmitting a signal by a signal transmission apparatus in a communication system is provided. The method includes detecting a parameter related to a Quadrature Amplitude Modulation (QAM) scheme and a parameter related to a Frequency Shift Keying (FSK) scheme based on channel quality and an interference component, and modulating information bits using a modulation scheme based on the QAM scheme and the FSK scheme which uses the parameter related to the QAM scheme and the parameter related to the FSK scheme.
Abstract:
The present invention relates to a 5th-generation (5G) or pre-5G communication system, which is to be provided for supporting a higher data transmission rate after the 4th-generation (4G) communication system, such as long term evolution (LTE). The present invention provides a method for receiving a signal in a multi-carrier system, the method comprising the steps of: performing, with respect to an input signal, a waveform pre-processing operation on the basis of at least one of an equalizing operation and a filtering operation; checking whether the waveform pre-processed signal is a Gaussian proximity signal; and performing soft-de-mapping with respect to the waveform pre-processed signal on the basis of a result of the checking.
Abstract:
A method of a terminal that forms beams and a device for performing beam tracking in a communication system that supports beamforming are provided. The method includes detecting, by the terminal, an object located at a periphery of the terminal and performing beam tracking through beams formed by the terminal, except for a beam that is formed in a direction in which the detected object is located.
Abstract:
A method of transmitting a signal using a plurality of modulation and coding schemes by a transmitter in a wireless communication system is provided. The method includes when a position of an active tone hits a position of a pilot tone of an adjacent cell, the active tone corresponding to a tone boosted through an application of a hybrid Frequency Shift Keying (FSK) and Quadrature Amplitude Modulation (QAM) Modulation (FQAM) scheme among tones included in an FQAM symbol based on the FQAM scheme in which a QAM scheme and a FSK scheme are combined, detecting two or more tones, which do not hit the position of the pilot tone among the tones included in the FQAM symbol, and transmitting signals by using the detected two or more tones.
Abstract:
An apparatus and a method for operating a transmission end in a wireless communication system that supports Frequency and Quadrature-Amplitude Modulation (FQAM) are provided. The method includes dividing an information bit stream into a plurality of portions, encoding each of the plurality of portions using different encoding schemes, and generating an FQAM symbol by combining result values of the encoding of each of the plurality of portions, wherein the encoding schemes are different according to at least one of an encoding order, an encoding rate, an input size, and an encoding technique.
Abstract:
A modulation method and an apparatus with consideration of adaptive Hybrid Automatic Repeat reQuest (HARQ) in a wireless communication system are provided. The method of a transmission end supporting a hybrid modulation technique in which different types of modulation schemes are mixed, information of a channel state with a reception end is collected. A modulation order of a first type of a modulation scheme and a modulation order of a second type of a modulation scheme are determined. The modulation order of a first type of a modulation scheme and a modulation order of a second type of a modulation scheme form the hybrid modulation technique.