Abstract:
A method of measuring a step height of a device using a scanning electron microscope (SEM), the method may include providing a device which comprises a first region and a second region, wherein a step is formed between the first region and the second region, obtaining a SEM image of the device by photographing the device using a SEM, wherein the SEM image comprises a first SEM image region for the first region and a second SEM image region for the second region, converting the SEM image into a gray-level histogram and calculating a first peak value related to the first SEM image region and a second peak value related to the second SEM image region, wherein the first peak value and the second peak value are repeatedly calculated by varying a focal length of the SEM, and determining a height of the step by analyzing a trend of changes in the first peak value according to changes in the focal length and a trend of changes in the second peak value according to the changes in the focal length.
Abstract:
An optical transformation module includes a light generator generating a parallel light beam to be incident onto a surface of an inspection object and changing a wavelength of the parallel light beam, and a rotating grating positioned on a path of the parallel light beam and rotatable by a predetermined rotation angle such that the parallel light beam is transformed according to the wavelength of the parallel light beam and the rotation angle of the rotating grating to have a desired incidence angle and a desired incidence position onto the surface of the inspection object.
Abstract:
In a method of detecting a defect of a substrate, a first light having a first intensity may be irradiated to a first region of the substrate through a first aperture. A defect in the first region may be detected using a first reflected light from the first region. A second light having a second intensity may be irradiated to a second region of the substrate through a second aperture. A defect in the second region may be detected using a second reflected light from the second region. Thus, the defects by the regions of the substrate may be accurately detected.
Abstract:
In a method of detecting a defect of a substrate, a first light having a first intensity may be irradiated to a first region of the substrate through a first aperture. A defect in the first region may be detected using a first reflected light from the first region. A second light having a second intensity may be irradiated to a second region of the substrate through a second aperture. A defect in the second region may be detected using a second reflected light from the second region. Thus, the defects by the regions of the substrate may be accurately detected.