Abstract:
An optical film includes a high refractive index pattern layer including a material having a refractive index greater than about 1, wherein a groove pattern defined by grooves, each of which has a curved groove surface and a depth greater than a width, is defined on a first surface of the high refractive index pattern, the grooves are two-dimensionally arranged in a first direction and a second direction, and a cross-sectional shape of each of the grooves has an anisotropic shape, in which a length in a first axial direction and a length in a second axial direction, which is perpendicular to the first axial direction, are different from each other, and a low refractive index pattern layer including a material having a refractive less than the refractive index of the high refractive index pattern layer and further including fillers corresponding to the grooves.
Abstract:
A method of evaluating an image blur of an optical film includes displaying a test pattern by driving an organic light-emitting display apparatus including the optical film, obtaining an image by capturing the test pattern using a digital camera, obtaining a spatial luminance distribution from the image, transforming the spatial luminance distribution into a sensation curve, and estimating a blur width from the sensation curve, where the blur width is a distance between peaks having negative minimum values, from among a plurality of peaks of the sensation curve.
Abstract:
Optical films for reducing color shift, and organic light-emitting display apparatuses, employing the same include a first lens pattern layer including a plurality of first grooves, and a second lens pattern layer on the first lens pattern layer having the plurality of first grooves. The second lens pattern layer has a plurality of second grooves crossing the plurality of first grooves. The plurality of first and second grooves are each shaped in the form of a stripe.
Abstract:
Provided are a color display film and a method for manufacturing the same, and a display apparatus. The color display film includes a base material layer, a high-refractive resin layer on which an optical pattern is formed, and a low-refractive light diffusion layer including a light diffuser in a stacked configuration. The optical pattern is formed in one surface of the high-refractive resin layer facing the low-refractive light diffusion layer. The method of manufacturing a color display film includes forming a high-refractive resin layer by coating a high-refractive transparent resin on one surface of a base material layer and forming an imprinted optical pattern on the coated high-refractive transparent resin, forming a low-refractive light diffusion layer by dispersing a light diffuser into a low-refractive transparent resin, and bonding one surface of the low-refractive light diffusion layer on a surface on which the optical pattern is formed.
Abstract:
Optical films, and organic light-emitting display devices employing the same, include a high refractive index pattern layer including a lens pattern region and a non-pattern region alternately formed, wherein the lens pattern region includes a plurality of grooves each having a depth larger than a width thereof, and the non-pattern region has no pattern; and a low refractive index pattern layer formed of a material having a refractive index smaller than a refractive index of the high refractive index pattern layer, wherein the low refractive index pattern includes a plurality of filling portions filling the plurality of grooves.
Abstract:
An optical film includes a high refractive index pattern layer including a material having a refractive index greater than about 1, wherein a groove pattern defined by grooves, each of which has a curved groove surface and a depth greater than a width, is defined on a first surface of the high refractive index pattern, the grooves are two-dimensionally arranged in a first direction and a second direction, and a cross-sectional shape of each of the grooves has an anisotropic shape, in which a length in a first axial direction and a length in a second axial direction, which is perpendicular to the first axial direction, are different from each other, and a low refractive index pattern layer including a material having a refractive less than the refractive index of the high refractive index pattern layer and further including fillers corresponding to the grooves.
Abstract:
Provided is a color improving film comprising a base layer, a high refractive light diffusion layer including an organic light diffuser on the base layer, a high refractive resin layer on the high refractive light diffusion layer, and a low refractive resin layer in which a lenticular lens pattern is formed on the high refractive resin layer, wherein the organic light diffuser comprises particles coated with a black pigment and non-coated particles, and wherein the lenticular lens pattern is formed on a surface of the low refractive resin layer facing the high refractive resin layer. According to the color improving film, a change in color sensitivity according to an angle of view is small, an external light reflectivity is low, and a light transmittivity and a light diffusibility are substantially improved. Also, the method of preparing the color improving film has excellent processiblity and economic efficiency.
Abstract:
An optical film includes: a high refractive index pattern layer including a material having a refractive index greater than 1 and having a first surface and a second surface which face each other, where a plurality of grooves is defined in the first surface, and each of the plurality of grooves is defined by a curved surface portion of the first surface of the high refractive index pattern and has a depth greater than a width thereof; and a low refractive index pattern layer including a plurality of protruding patterns disposed in the plurality of grooves, having a refractive index less than the refractive index of the high refractive index pattern layer, and including a plurality of layers having different refractive indices from each other.
Abstract:
Optical films, and organic light-emitting display apparatuses employing the same, include a high refractive index pattern layer including a first surface and a second surface facing each other, wherein the first surface includes a pattern having a plurality of grooves. The plurality of grooves each have a curved surface and a depth greater than a width thereof. The high refractive index pattern layer is formed of a material having a refractive index greater than 1. The optical films, and the organic light-emitting display apparatuses, further include a low refractive index pattern layer formed of a material having a refractive index smaller than the refractive index of the material constituting the high refractive index pattern layer. The low refractive index pattern layer includes a filling material for filling the plurality of grooves.
Abstract:
Optical films, and organic light-emitting display apparatuses employing the same, include a high refractive index pattern layer including a first surface and a second surface facing each other, wherein the first surface includes a pattern having a plurality of grooves. The plurality of grooves each have a curved surface and a depth greater than a width thereof. The high refractive index pattern layer is formed of a material having a refractive index greater than 1. The optical films, and the organic light-emitting display apparatuses, further include a low refractive index pattern layer formed of a material having a refractive index smaller than the refractive index of the material constituting the high refractive index pattern layer. The low refractive index pattern layer includes a filling material for filling the plurality of grooves.