Abstract:
A 5th generation (5G) or pre-5G communication system for supporting a higher data transfer rate than a 4th generation (4G) communication system such as long term evolution (LTE) is provided. An electronic device may include a processor and a communication interface operatively coupled to the processor for transmitting and receiving a message. The processor can transmit a first message to a first electronic device using a proximity communication for communication with a second electronic device, and the first message can include information enabling the first electronic device to communicate with the second electronic device on behalf of the electronic device.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). The present disclosure provides an operating method and apparatus for supporting a handover to support a high reliability and low latency service in a wireless communication system. The method of operating the terminal includes receiving data from a service via a first base station (BS), transmitting, to the first BS, a bearer establishment command message between the first BS and a second BS determined by movement information of the terminal, and receiving, from the second BS, data transmitted from the second BS via the established bearer between the first BS and the second BS.
Abstract:
The present invention relates to a method and an apparatus for switching a data path in a wireless communication system supporting device-to-device (D2D) communication. The method for switching a path of a base station in a wireless communication system supporting device-to-device communication, according to the present invention, comprises the steps of receiving, from a first terminal, a measurement report including a D2D identifier of a second terminal that performs a direct communication with the first terminal; sending a query to a D2D server for a network identifier corresponding to the D2D identifier of the second terminal; and determining whether to switch a direct path between the first terminal and the second terminal to a local path on the basis of the network identifier of the second terminal obtained from the D2D server.
Abstract:
A two-hop link transmission method and apparatus are provided. The method includes establishing a two-hop link and scheduling transmission on the two-hop link in a Device-To-Device (D2D) communication network. The two-hop link transmission method includes identifying neighbor terminals available for communication with the transmission terminal, selecting one of the neighboring terminals as a recipient terminal, determining a type of a link to be established with the selected neighboring terminal between a single-hop link and two-hop link types, selecting, when the two-hop link type is determined, a relay terminal among the neighboring terminals, establishing the two-hop link with the recipient terminal via the relay terminal, allocating a Multi-Hop Connection Identifier (MCID) for the two-hop link, and transmitting data to the recipient terminal through the two hop link.
Abstract:
A method for supporting a device to device (D2D) communication in a base station of a mobile communication system according to one embodiment of the present specification comprises the steps of: determining one or more device groups including one or more devices among a plurality of devices; determining radio resources for measuring channels for the determined device groups; and transmitting, to the devices included in the respective groups, information on the radio resources for measuring the channels corresponding to the groups. According to the embodiment of the present specification, complexity of measuring a channel state in the D2D communication is reduced, and many more devices can measure the channel state using limited radio resources and can transmit and receive data. The present disclosure relates to re-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE).
Abstract:
An electronic device is provided. The electronic device includes a first electromagnet mounted to a side surface of the electronic device and configured to generate a magnetic force, a data channel terminal configured to transmit and receive a signal for detecting whether another electronic device is attached, and a processor configured to determine at least one of a polarity and a strength of the magnetic force of the first electromagnet for an attachment or detachment between the electronic device and the other electronic device, control the first electromagnet according to at least one of the determined polarity and strength, and detect an attachment or detachment state between the electronic device and the other electronic device.
Abstract:
A method and apparatus for exchanging information between devices for use in the pairing process for Device To Device (D2D) communication is provided. A signal transmission/reception method of a device in a mobile communication system includes determining a resource for the device to transmit a pairing signal, transmitting a discovery signal including information on the determined resource, pairing with a neighbor device that received the discovery signal through the resource indicated by the resource information, and communicating data signals with the paired neighbor device. The information exchange method and apparatus for D2D communication is capable of preventing a plurality of devices from attempting pairing on the same frequency simultaneously, thereby improving pairing efficiency and reducing power consumption of the device.
Abstract:
The present invention relates to a method and apparatus for synchronization between electronic devices and, more particularly, to a synchronization method and apparatus for wireless communication between electronic devices. As a synchronization method for an electronic device performing wireless communication with other electronic devices, the method may include: checking, when two or more reference synchronization signals are received within a preset period, whether the received reference synchronization signals are synchronized; determining, when the received reference synchronization signals are not synchronized, to operate as a device sending a reference synchronization signal of a class lower than or equal to that of the lowest class reference synchronization signal among the received reference synchronization signals; sending a reference synchronization signal at a preset time in a synchronization frame designed to preserve temporal orthogonality between classes; and performing synchronization between reference synchronization signals in cooperation with different devices having sent reference synchronization signals.
Abstract:
An electronic apparatus for transmitting and receiving information includes a transceiver configured to transmit and receive data, and a controller configured to cause the transceiver to receive display related information from at least one display, select at least one of the at least one display, and receive data from the selected at least one display based on the at least one display related information. An electronic apparatus for transmitting and receiving data includes a transceiver, and a controller configured to cause the transceiver to detect an image of a screen displayed on a display, determine whether a region including code information exists on a screen, decrypt the code information in the region, and receive data based on the decrypted code information.
Abstract:
The present invention relates to a method and apparatus for synchronization between electronic devices and, more particularly, to a synchronization method and apparatus for wireless communication between electronic devices. As a synchronization method for an electronic device performing wireless communication with other electronic devices, the method may include: checking, when two or more reference synchronization signals are received within a preset period, whether the received reference synchronization signals are synchronized; determining, when the received reference synchronization signals are not synchronized, to operate as a device sending a reference synchronization signal of a class lower than or equal to that of the lowest class reference synchronization signal among the received reference synchronization signals; sending a reference synchronization signal at a preset time in a synchronization frame designed to preserve temporal orthogonality between classes; and performing synchronization between reference synchronization signals in cooperation with different devices having sent reference synchronization signals.