Abstract:
A field emission device (FED) and a method for fabricating the FED are provided. The FED includes micro-tips with nano-sized surface features, and a focus gate electrode over a gate electrode, wherein one or more gates of the gate electrode is exposed through a single opening of the focus gate electrode. In the FED, occurrence of arcing is suppressed. Although an arcing occurs in the FED, damage of a cathode and a resistor layer is prevented, so that a higher working voltage can be applied to the anode. Also, due to the micro-tips with nano-sized surface features, the emission current density of the FED increases, so that a high-brightness display can be achieved with the FED. The gate turn-on voltage can be lowered due to the micro-tip as a collection of nano-sized tips, thereby reducing power consumption.
Abstract:
A field emission display with a double gate structure and a method of manufacturing therefor are provided. The field emission display includes a substrate, a cathode layer formed on the substrate, a gate insulating layer which is formed on the substrate and the cathode layer and has a cavity through which part of the cathode layer is exposed, a field emitter provided on the cathode layer exposed on the bottom of the cavity, a first gate layer which is formed in the gate insulating layer and in which a first gate hole having a diameter greater than that of the cavity is formed not to be exposed to an inner surface of the cavity, and a second gate layer which is formed on the gate insulating layer and in which a second gate hole is formed in a portion that corresponds to the cavity.
Abstract:
Provided is a field emission device using carbon nanotubes. The field emission device includes a substrate, a cathode, a gate insulating layer, an electron emitter, and a gate electrode. The cathode is formed on the substrate. The gate insulating layer is formed on the cathode and has a well exposing a portion of the cathode. The electron emitter is formed on the exposed portion of the cathode. The gate electrode is formed on the gate insulating layer and has a gate hole corresponding to the well. The gate electrode further includes a cylindrical electrode part that forms a focusing electric field from the gate hole toward a proceeding path of an electron beam. Accordingly, a focusing electric field can be formed around an electron beam emitted from the electron emitter so as to converge and focus the electron beam passing through the focusing electric field. As a result, color purity, brightness, and durability can be improved.
Abstract:
A field emission device for displaying images with good quality is provided. The field emission device includes an anode plate, an anode electrode and a phosphor layer are formed inside of the anode plate, a cathode plate, a plurality of electron emission sources for emitting electrons which correspond to the phosphor layer and a gate electrode having gate holes through which the electrons pass are formed inside of the cathode plate, a mesh grid which is provided between the cathode plate and the anode plate and in which a plurality of electron-controlling holes are formed in a region corresponding to the gate holes, a spacer which supports the mesh grid between the anode plate and the mesh grid, and insulating layers which are formed on both sides of the mesh grid and have windows through which the plurality of electron-controlling holes are exposed and which correspond to a region where the plurality of electron-controlling holes are formed.
Abstract:
A method of manufacturing a field emitter array using carbon nanotubes, low voltage field emission material, is provided. The method includes the steps of (a) forming a conductive thin film layer on the top of a transparent substrate having a transparent electrode and exposing a predetermined portion of the transparent electrode; (b) forming an opaque thin film layer on the exposed predetermined portion of the transparent electrode; (c) depositing an insulation material on the entire top surface of the transparent substrate and removing the insulation material from the top surfaces of the conductive thin film layer and the opaque thin film layer, thereby forming an insulation layer; (d) forming a gate layer on the top of the insulation layer; and (e) removing the opaque thin film layer and forming carbon nanotube tips on the top of the exposed transparent electrode. Accordingly, the triode carbon nanotube field emitter array can be easily manufactured using a small number of mask layers and without using a special aligner.