摘要:
A method, system, and article are provided for monitoring performance of hardware devices. Each hardware device is configured with an agent, and the server is configured with a coordinator. The agent collects device data at a first modifiable frequency and communicates the collected data to the coordinator at a second dynamically modifiable frequency. The collected data is periodically monitored and the first and second frequencies are modified subject to evaluation of the collected and monitored data.
摘要:
A data center power cost accounting system uses server and storage and cooling power consumption models and device maps, together with runtime application maps, to estimate the equipment power consumption and cooling power consumption of individual applications. An approximation of the cooling cost over a period of time, for any given application, can be pieced together by adding up the equipment utilized by the application and applying the cooling estimates obtained from computational fluid dynamics (CFD) simulations. The cooling estimates can further account for changes or variability in resource usage over time since the cooling estimates are based directly on utilization. The per application power consumption costs are obtained without having to install or depend on power measurement instruments or other hardware in the datacenters.
摘要:
A data center power cost accounting system uses server and storage and cooling power consumption models and device maps, together with runtime application maps, to estimate the equipment power consumption and cooling power consumption of individual applications. An approximation of the cooling cost over a period of time, for any given application, can be pieced together by adding up the equipment utilized by the application and applying the cooling estimates obtained from computational fluid dynamics (CFD) simulations. The cooling estimates can further account for changes or variability in resource usage over time since the cooling estimates are based directly on utilization. The per application power consumption costs are obtained without having to install or depend on power measurement instruments or other hardware in the datacenters.
摘要:
Embodiments for efficiently computing complex statistics from historical time series data are provided. A hierarchical summarization method includes receiving at least one stream of data and creating data blocks from the at least one stream of data. In another embodiment, a method for computing statistics for historical data includes accessing at least one online stream of historical data, the online stream of historical data including metadata, and creating data blocks from the at least one online stream of historical data. Each data block includes a pair of timestamps indicating a sampling start time and a sampling end time, a number of data samples spanned by the data block, a SUM(X) statistic, a SUM(XX) statistic, and a SUM(XY) statistic computed for the data samples spanned by the data block. Other methods are also presented, such as methods for efficiently and accurately calculating statistical queries regarding historical data for arbitrary time ranges, among others.
摘要:
A method, system, and article are provided for monitoring performance of hardware devices. Each hardware device is configured with an agent, and the server is configured with a coordinator. The agent collects device data at a first modifiable frequency and communicates the collected data to the coordinator at a second dynamically modifiable frequency. The collected data is periodically monitored and the first and second frequencies are modified subject to evaluation of the collected and monitored data.
摘要:
The invention provides a method and system for continuous optimization of a data center. The method includes monitoring loads of storage modules, server modules and switch modules in the data center, detecting an overload condition upon a load exceeding a load threshold, combining server and storage virtualization to address storage overloads by planning allocation migration between the storage modules, to address server overloads by planning allocation migration between the server modules, to address switch overloads by planning allocation migration mix between server modules and storage modules for overload reduction, and orchestrating the planned allocation migration to reduce the overload condition in the data center.
摘要:
Embodiments of the present invention provide an approach for adapting an information extraction middleware for a clustered computing environment (e.g., a cloud environment) by creating and managing a set of statistical models generated from performance statistics of operating devices within the clustered computing environment. This approach takes into account the required accuracy in modeling, including computation cost of modeling, to pick the best modeling solution at a given point in time. When higher accuracy is desired (e.g., nearing workload saturation), the approach adapts to use an appropriate modeling algorithm. Adapting statistical models to the data characteristics ensures optimal accuracy with minimal computation time and resources for modeling. This approach provides intelligent selective refinement of models using accuracy-based and operating probability-based triggers to optimize the clustered computing environment, i.e., maximize accuracy and minimize computation time.
摘要:
The present invention proactively identifies hotspots in a cloud computing environment through cloud resource usage models that use workload parameters as inputs. In some embodiments the cloud resource usage models are based upon performance data from cloud resources and time series based workload trend models. Hotspots may occur and can be detected at any layer of the cloud computing environment, including the server, storage, and network level. In a typical embodiment, parameters for a workload are identified in the cloud computing environment and inputted into a cloud resource usage model. The model is run with the inputted workload parameters to identify potential hotspots, and resources are then provisioned for the workload so as to avoid these hotspots.
摘要:
Embodiments of the present invention provide lifecycle storage management for data within a Cloud computing environment. Specifically, a set of policies can be defined that allow for automatic valuation of the data and migration of the data between a set of storage tiers. Before a policy set is deployed, it can be assessed to determine effects it will have on cost, performance, and data location. Based on data characteristics and access patterns, a set of policy recommendations can be provided that predict the value of the data over time, and offer an improved migration strategy for moving the data between the set of storage tiers as the value of the data changes.
摘要:
Embodiments discussed in this disclosure provide an integrated provisioning framework that automates the process of provisioning storage resources, end-to-end, for an enterprise storage cloud environment. Such embodiments configure and orchestrate the deployment of a user's workload and, at the same time, provide optimization across a multitude of storage cloud resources. Along these lines, input is received in the form of workload requirements and configuration information for available system resources. Based on the input, a set (at least one) of storage cloud configuration plans is developed that satisfy the workload requirements. A set of scripts is then generated that orchestrate the deployment and configuration of different software and hardware components based on the plans.