Abstract:
A dual gate field effect transistor with an ultra thin channel of substantially uniform width formed by a self-aligned process utilizing selective etching or controlled oxidation between different materials to form a vertical channel extending between source and drain regions, having a thickness in the range from 2.5 nm to 100 nm.
Abstract:
A dual gate field effect transistor with an ultra thin channel of substantially uniform width formed by a self-aligned process utilizing selective etching or controlled oxidation between different materials to form a vertical channel extending between source and drain regions, having a thickness in the range from 2.5 nm to 100 nm.
Abstract:
The present invention relates to methods for fabricating nanoscale electrodes separated by a nanogap, wherein the gap size may be controlled with high precision using a self-aligning aluminum oxide mask, such that the gap width depends upon the thickness of the aluminum oxide mask. The invention also provides methods for using the nanoscale electrodes.
Abstract:
Apparatus and methods for forming the apparatus include nanoparticles, catalyst nanoparticles, carbon nanotubes generated from catalyst nanoparticles, and methods of fabrication of such nanoparticles and carbon nanotubes.
Abstract:
A method for formulating an exposure dose for an electron beam on a resist film for a pattern of geometric shapes which compensates for electron scattering effects utilizing hierarchial design data which is preserved to as great as an extent as possible in the computation of the exposure dose. The exposure dose is corrected for both the forward scatter and backscatter effects of the electron beam in which the design data is modified for interactions of shapes which are affected only over the forward scatter range. In another version of the method, a multiple Gaussian approximation is used where the short term Gaussian terms are treated as the forward scatter terms and the long term Gaussian terms are treated as the back scatter terms.
Abstract:
A first single-wall carbon nanotube can be electrically coupled to a first electrode, and a second single-wall carbon nanotube electrically coupled to a second electrode. In an example, the first and second single-wall carbon nanotubes are laterally separated by a nanoscale gap, such as sized and shaped for insertion of a single molecule.
Abstract:
In various embodiments, the properties of a cross-linkable polymer can be changed by modifying the degree of cross-linking. The degree of cross-linking can be modified on a localized basis using lithographic patterns in which the cross-linkable polymer can be selectively and controllably subjected to charged particles or electromagnetic radiation. The modification of the degree of cross-linking can be applied to substrates having surfaces with varying geometric forms.