Abstract:
Processes for manufacturing surface elements are disclosed. The surface elements can comprise a decorative upper layer and a supporting core. Processes for manufacturing such surface elements can comprise obtaining a decor at least by digitization of a number of archetypes selected from woods and minerals by making a high resolution digital picture of said archetypes, storing said decor digitally, manufacturing a plurality of supporting cores, each being of rectangular shape and each having a size essentially equaling only one desired end user format and provided with an upper side and a lower side, editing said decor to fit said shape and size of each one of said plurality of supporting cores, and digitally applying different patterns on each of said plurality of supporting cores, wherein said patterns are selected and parted from said decor and said decor is used to control said digitally applying the different patterns.
Abstract:
A pressuring module includes a stage having a mounting surface on which an object to be pressured is mounted; a plurality of pressure detecting sections that detect a pressure applied on the mounting surface; and a pressure varying section that varies a pressure distribution across a plane of the mounting surface, by differing a pressing force against the object to be pressured between a periphery and a central portion of the mounting surface in a plane direction of the mounting surface based on the pressure detected by the plurality of pressure detecting sections.
Abstract:
Processes for manufacturing surface elements are provided. The surface elements can comprise a decorative upper layer and a supporting core. Processes for manufacturing such surface elements can comprise manufacturing a supporting core having an upper side, treating said upper side of said supporting core, including at least one of the steps of ground coating with a primer, sanding and providing said upper side with a surface structure, applying a digitally printed décor comprising inks of at least four colors directly on top of the ground coating by an ink-jet type printer, said digitally printed decor being one of wood or mineral, and providing and curing a protecting and at least partly translucent wear layer on the upper side of the supporting core.
Abstract:
A process for the manufacturing of surface elements is provided herein. The surface elements can include a decorative upper layer and a supporting core. A supporting core with a desired format can be manufactured by press molding and provided with an upper side and a lower side. The upper side of the supporting core can be provided with a structure by a momentary pressing operation using a surface structured matrix. A ground coating can be provided on the structured upper side of the supporting core. A digitally printed decor comprising inks of at least four colors can be applied directly on top of the ground coating by an ink-jet type printer. The structure of the supporting core can enhance the realism of the decor, wherein the decor can be selected from the group consisting of woods and minerals.
Abstract:
A thermosetting oligomer or thermosetting polymer is provided. The thermosetting oligomer or thermosetting polymer contains repeating units, each of which has at least one thermosetting functional group in the side chain and is represented by Formula 1: where repeating units include X1, A1, and Y1 subunits, sidechain units include linking unit L and thermosetting functional group Z, and n is an integer from 1 to 4. The thermosetting oligomer or thermosetting polymer has a low coefficient of thermal expansion and high or no glass transition temperature, stiffness, processability, heat resistance and mechanical properties. The thermosetting oligomer or thermosetting polymer is highly soluble, wettable and dimensionally stable and is suitable for use in films, prepregs and printed circuit boards. Further provided are a thermosetting resin composition including the thermosetting oligomer or thermosetting polymer and a printed circuit board using the composition.
Abstract:
A pressuring module includes a stage having a mounting surface on which an object to be pressured is mounted; a plurality of pressure detecting sections that detect a pressure applied on the mounting surface; and a pressure varying section that varies a pressure distribution across a plane of the mounting surface, by differing a pressing force against the object to be pressured between a periphery and a central portion of the mounting surface in a plane direction of the mounting surface based on the pressure detected by the plurality of pressure detecting sections.
Abstract:
A reverse molded fiberboard panel; a wainscot kit comprising a plurality of differently sized reverse molded panels, and a planar finishing or spacer panel, adapted to completely cover any size wall between a wall base board and a wall chair rail; and a method of reverse molding a loose cellulosic mat, in a single pressing step, to provide one or more relatively high density, raised panels without requiring preliminary pressing, or other pre-shaping step, such as scalping. The reverse-molded panels are molded in a conventional, multi-opening fiberboard press, in a single pressing step process, while achieving excellent transfer of mold detail (embossing fidelity) without visually noticeable fiber fracture.
Abstract:
A wrapping tape for automatically circumferentially wrapping an axially extending article, in particular a cable or a cable loom, the tape suitable for wrapping around the article and then tautened and joined to itself in an overlapping manner by a joining tool. The wrapping tape comprises a core with a contact area, which is designed to rest on the article; and tabs protruding laterally from the core. A tab forms such an angle with the contact area that the joining tool can engage behind the tab when the tape is wrapped tightly around the article, and without the tool engaging behind the contact area, while tabs of overlapping tape portions are joined to one another.
Abstract:
A method of manufacturing an oriented film of thermoplastic polymer material comprises extrusion of a film in tubular form from an extrusion die, orienting the film in a main direction of orientation during the haul-off from the die while in molten or semi-molten state, the direction being at an angle between 0 and 45-to the axis of the tube, followed by cutting of the tube at an angle to its main degree of orientation to form a web having an orientation of no less than 20 to its longitudinal direction, which method involves segmental stretching of the film to form an array of linear bosses (1), being of thicker material, integrally connected by thinner webs (2), said bosses and webs extending in a direction which is generally parallel with the direction of orientation, forming an acute angle to the longitudinal direction of the web, the method involving, after segmental stretching and cutting, shearing of the bosses along one another under re-orientation in the connecting webs, to increase the angle at which the bosses and webs extend relative to the direction of orientation. The bosses are separated from one another by no more than 3 mm. The shearing operation may be carried out by segmental rollers (5).
Abstract:
The present invention includes a neck-bonded laminate and a process for forming a neck-bonded elastic laminate, the laminate including a primary elastic region and a secondary elastic region. An exemplary process for forming the laminate includes providing a necked material and overlaying the necked material with an elastic sheet. The necked material and elastic sheet are passed through a nip between two rollers, the rollers being configured to form a primary elastic region and a secondary elastic region and the secondary elastic region having higher strength than the primary elastic region.