Abstract:
Described herein are techniques related to motion estimation for video encoding. In particular, integer estimation is performed on a reference video frame, and a best size macro block is determined. A fractional estimation is performed on that best size macro block. Based on the fractional estimation, a determination is made if an improvement occurs over the macro block from the integer estimation. If such an improvement occurs, then all sub shapes of the best size macro block from the integer search/estimation are updated. Furthermore, the new sub macro block is chosen as the final macro block to be used for video encoding.
Abstract:
Described herein are techniques related to motion and quality adaptive rolling intra (I) macro-block (MB) that is used to encode a particular image frame. In particular, the rolling I MB configuration may be based upon global motion direction, quantization parameter (QP) value, complexity based roll, and/or QP saturation based roll.
Abstract:
Described herein are techniques related to motion and quality adaptive rolling intra (I) macro-block (MB) that is used to encode a particular image frame. In particular, the rolling I MB configuration may be based upon global motion direction, quantization parameter (QP) value, complexity based roll, and/or QP saturation based roll.
Abstract:
Methods, systems and computer program products that may improve the efficiency of the video encoding process. Mode decision processing and bit stream packing may be performed in parallel for various frames in a sequence. This reduces the amount of idle time for both the mode decision processing logic and the bit stream packing logic, improving the overall efficiency of the video encoder.
Abstract:
Methods, systems and computer program products that may improve the efficiency of the video encoding process. Mode decision processing and bit stream packing may be performed in parallel for various frames in a sequence. This reduces the amount of idle time for both the mode decision processing logic and the bit stream packing logic, improving the overall efficiency of the video encoder.
Abstract:
Described herein are techniques related to motion estimation for video encoding. In particular, integer estimation is performed on a reference video frame, and a best size macro block is determined. A fractional estimation is performed on that best size macro block. Based on the fractional estimation, a determination is made if an improvement occurs over the macro block from the integer estimation. If such an improvement occurs, then all sub shapes of the best size macro block from the integer search/estimation are updated. Furthermore, the new sub macro block is chosen as the final macro block to be used for video encoding.
Abstract:
Systems, apparatus and methods are described including determining a first value by reducing a bit-length of a reference pixel value and adding a first predetermined value to the result and determining a second value by subtracting a residual pixel value from a current pixel value to generate a difference value, reducing a bit-length of the difference value and adding the first predetermined value to the result. The range of the second value may then be clipped by setting the second value to zero when the second value is equal to or less than a second predetermined value and setting the second value to a third predetermined value when the second value is equal to or greater than a fourth predetermined value. The first value and the second value may then be used for inter-layer residual prediction in Scalable Video Coding (SVC) systems.
Abstract:
A shield cover for a braided wire shield that is capable of securely fixing a braided wire to a shield member through a single pressing operation. The shield cover having a mating end, an inner casing, an outer cover housing. and a securing section. The inner casing positioned at an end opposite the mating end and having a shield receiving passageway. The outer cover housing positioned at the mating end of the shield cover and forming a connector receiving passageway being wider than the shield receiving passageway. The securing section extends from the inner casing toward the mating end and positioned apart from the outer cover housing.
Abstract:
In a method of estimating a PSF in the electron-beam lithography process, a linear resist test pattern may be formed on a substrate. A line response function (LRF) may be determined using a cross-sectional profile of the linear resist test pattern. A development rate distribution in a first direction, the first direction may be substantially perpendicular to an extending direction of the linear resist test pattern, may be calculated using the LRF. A line spread function (LSF), which may represent an exposure distribution in the first direction, may be calculated using the development rate distribution. The PSF may be estimated using the LSF.
Abstract:
A pattern forming method includes providing a first mask with a first aperture, forming a first transfer pattern on a resist by irradiating a first electron beam through the first aperture, the first transfer pattern extending in a first direction and having a boundary along a circumference thereof, and the first electron beam having a cross section of a first square when emerging from the first aperture, and forming a second transfer pattern on the resist by irradiating a second electron beam through the first aperture, the second transfer pattern extending in the first direction and overlapping a portion the boundary of the first transfer pattern, and the second electron beam having a cross section of a second square when emerging from the first aperture.