Abstract:
A method of forming a photomask using a calibration pattern that may exactly transfer a desired pattern to a substrate. The method includes providing one-dimensional calibration design patterns each having first design measures and providing two-dimensional calibration design patterns each having second design measures; obtaining one-dimensional calibration measured patterns using the one-dimensional calibration design patterns and obtaining two-dimensional calibration measured patterns using the two-dimensional calibration design patterns; obtaining first measured measures of the one-dimensional calibration measured patterns and obtaining second measured measures of the two-dimensional calibration measured patterns; establishing a correlation between the first measured measures and the second measured measures; and converting a main measured measure of a main pattern into a corresponding one of the first measured measures using the correlation.
Abstract:
A method for manufacturing a photomask includes forming a photoresist film on a substrate, and forming a defect detecting pattern on the photoresist film. The defect detecting pattern has a first pattern elongated in a first direction and a second pattern overlapping one end of the first pattern and elongated in a second direction different from the first direction. The first pattern and the second pattern are formed using electron beams (e-beam) diffracted by a same amplifier.
Abstract:
A method of forming a semiconductor device can include determining a shot set including a plurality of shots, based on a final pattern used to form a mask. Shots included in the plurality shots can be classified as being in a first pass shot set or in a second pass shot set, where each can include a plurality of non-directly neighboring shots. A first pass exposure can be performed to radiate a reticle to provide the first pass shot set and a second pass exposure can be performed to radiate the reticle to provide the second pass shot set.
Abstract:
A pattern forming method includes providing a resist, irradiating a first electron beam to a first region of the resist, and irradiating a second electron beam to a second region which is defined along a boundary of the first region of the resist, wherein the first electron beam has a first cross section having a polygonal shape, and the second electron beam has a second cross section having a polygonal shape.
Abstract:
A method for inspecting a uniformity of CD (CD) of a photo mask pattern increases a production yield. The method obtains a CD by precisely measuring a photo mask by using, an electron microscope. Then, a measurement image having, a plurality of patterns formed in the photo mask is obtained by photographing the photo mask at a high speed through an optical microscope. A gray level based on the CD is calculated by capturing just a pattern area in the measurement image, and an estimated value and a correlation coefficient is obtained, when an open density of the measurement image is relatively low. Accordingly, a uniformity of CD can be confirmed more clearly in a measurement of high speed for a measurement image having a relatively low open density.
Abstract:
A method of precisely inspecting the entire surface of a mask at a high speed in consideration of optical effects of the mask. The method includes designing a target mask layout for a pattern to be formed on a wafer, and extracting an effective mask layout using an inspection image measured from the target mask layout using an aerial image inspection apparatus as a mask inspection apparatus. The effective mask layout is input to a wafer simulation tool for calculating a wafer image to be formed on the wafer. Optical effects of the mask are detected by comparing the target mask layout with the effective mask layout.
Abstract:
The reflective photomask may include a substrate, a reflective layer formed on the substrate, an absorption pattern formed on the reflective layer and over a first portion of the substrate. A compensatory portion may be formed over at least a second portion of the substrate. The second portion is adjacent to the first portion, and the compensatory portion is thinner than the absorption pattern.
Abstract:
A method of forming a photomask using a calibration pattern that may exactly transfer a desired pattern to a substrate. The method includes providing one-dimensional calibration design patterns each having first design measures and providing two-dimensional calibration design patterns each having second design measures; obtaining one-dimensional calibration measured patterns using the one-dimensional calibration design patterns and obtaining two-dimensional calibration measured patterns using the two-dimensional calibration design patterns; obtaining first measured measures of the one-dimensional calibration measured patterns and obtaining second measured measures of the two-dimensional calibration measured patterns; establishing a correlation between the first measured measures and the second measured measures; and converting a main measured measure of a main pattern into a corresponding one of the first measured measures using the correlation.
Abstract:
A method of fabricating a photomask may include forming a light-shielding layer and a first resist film on a substrate, forming a first resist pattern by exposing first exposed regions of the first resist film to a first exposure source that may have a first energy, forming a first light shielding pattern by etching the selectively exposed light-shielding layer by using the first resist pattern as an etching mask, removing the first resist pattern, forming a second resist film on the first light-shielding layer, exposing second exposed regions of the second resist film that may have a desired pattern shape to a second exposure source that may have a second energy, forming a second light shielding pattern by etching the selectively exposed first light shielding pattern by using the second resist pattern as an etching mask, and removing the second resist pattern.
Abstract:
A binary photomask with an improved resolution and a method of manufacturing the same are provided. The binary photomask may include a substrate, a transmission-prevention pattern formed on the substrate to define a circuit pattern, and a compensation layer configured to change light transmitted through the binary photomask based on a topology of the compensation layer and arranged on the transmission-prevention layer and/or the substrate.