摘要:
A method of making a magnetoresistive sensor includes defining a track width of a magnetoresistive element stack of the sensor. Further, processes of the method enable depositing of hard magnetic bias material on each side of the stack. These processes may permit both milling of excess depositions of the material outside of regions where the hard magnetic bias material is desired via use of a photoresist and making the material have a planar surface via chemical mechanical polishing, which also removes the material on top of the stack. The method includes removing excess material outside of the photoresist, wherein the excess material includes part of the hard bias layer, while a portion of the hard bias layer remains directly above the MR sensor stack.
摘要:
A method of making a magnetoresistive sensor includes defining a track width of a magnetoresistive element stack of the sensor. Further, processes of the method enable depositing of hard magnetic bias material on each side of the stack. These processes may permit both milling of excess depositions of the material outside of regions where the hard magnetic bias material is desired via use of a photoresist and making the material have a planar surface via chemical mechanical polishing, which also removes the material on top of the stack.
摘要:
A method for fabricating magnetic side shields for an MR sensor of a magnetic head. Following the deposition of MR sensor layers, a first DLC layer is deposited. Milling mask layers are then deposited, and outer portions of the milling mask layers are removed such that a remaining central portion of the milling mask layers is formed having straight sidewalls and no undercuts. Outer portions of the sensor layers are then removed such that a relatively thick remaining central portion of the milling mask resides above the remaining sensor layers. A thin electrical insulation layer is deposited, followed by the deposition of magnetic side shields. A second DLC layer is deposited and the remaining mask layers are then removed utilizing a chemical mechanical polishing (CMP) liftoff step. Thereafter, the first DLC layer and the second DLC layer are removed and a second magnetic shield layer is then fabricated thereabove.
摘要:
A method for constructing a magnetoresistive sensor which eliminates all redeposited material (redep) from the sides of the sensor. The method involves forming a mask over a plurality of sensor layers, and then performing an ion mill at an angle that is nearly normal to the surface of the sensor layers. A second (glancing) ion mill is then performed at a larger angle with respect to the normal. The first ion mill may be 0-30 degrees with respect to normal, whereas the second ion mill can be 50-89 degrees with respect to normal. The first ion mill is performed with a larger bias voltage than the second ion mill. The higher bias voltage of the first ion mill provides a well collimated ion beam to form straight vertical side walls. The lower bias voltage of the second ion mill prevent damage to the sensor layers during the removal of redep from the sides of the sensor.
摘要:
A current perpendicular to plane (CPP) sensor and method of manufacturing such a sensor that prevents current shunting at the sides of the barrier/spacer layer due to redeposited material. A first ion mill is performed to remove at least the free layer. A quick glancing ion mill can be performed to remove the small amount of redep that may have accumulated on the sides of the free layer and barrier/spacer layer. Then an insulation layer is deposited to protect the sides of the free layer/barrier layer during subsequent manufacturing which can include further ion milling to define the rest of the sensor and another glancing ion mill to remove the redep formed by the further ion milling. This results in a sensor having no current shunting at the sides of the sensor and having no damage to the sensor layers.
摘要:
A method for fabricating a read head sensor for a magnetic disk drive is presented. The method includes providing a layered wafer stack to be shaped, where the layered wafer stack includes a free layer, a barrier layer and a pinned layer. A single- or multi-layered photoresist mask is formed upon the layered wafer stack to be shaped. A material removal source is provided and used to perform a partial depth material removal within a partial depth material removal range which extends from the free layer to within the pinned layer to a partial depth material removal endpoint. In various embodiments, this depth endpoint lies at or within the barrier layer or within but not through the pinned layer.
摘要:
A method is presented for fabricating a CPP read head having a CPP read head sensor and a hard bias layer which includes forming a strip of sensor material in a sensor material region, and depositing strips of fast-milling dielectric material in first and second fast-milling dielectric material regions adjacent to the sensor material region. A protective layer and a layer of masking material are deposited on the strip of sensor material and the strips of fast-milling dielectric material to provide masked areas and exposed areas. A shaping source, such as an ion milling source, is provided which shapes the exposed areas. Hard bias material is then deposited on the regions of sensor material and fast-milling dielectric material to form caps on each of these regions. The caps of hard bias material and the masking material are then removed from each of these regions.
摘要:
In a CPP MR device such as a tunnel magnetoresistive (TMR) device, shoulders that have a magnetic moment that is matched to the magnetic moments of the free layer extend between the free layer and the S2 shield to provide an electrical path from one shoulder, through the shield, to the other shoulder for dissipating edge charges. Thus, a CPP MR device may include a seed stack, a pinned stack on the seed stack, and a tunnel barrier on the pinned stack. A free stack may be on the tunnel barrier, and the free stack can include a free sublayer separated from a magnetic shield and a path for dissipating edge charges in the free stack through the magnetic shield.
摘要:
A magnetic tunnel junction (MTJ) sensor in which the free layer longitudinal biasing elements are coupled, without insulation, to the free layer outside of the MTJ stack to provide reliable non-shunting MTJ free layer stabilization without extremely thin dielectric layers. In one embodiment, hard magnetic (HM) layers are disposed in contact with the free layer outside of and separated from the MTJ stack active region by a thick dielectric layer. In another embodiment, antiferromagnetic (AFM) bias layers are disposed in contact with the free layer outside of and separated from the MTJ stack active region by a thick dielectric layer. In other embodiments, nonconductive HM layers are disposed either in contact with the free layer outside of the MTJ stack active region and/or in abutting contact with the MTJ stack active region.
摘要:
A magnetic head, comprising a read sensor formed in a central region, the read sensor including a free layer; an etch-stop layer formed over the free layer; and a capping layer formed over the free layer.