摘要:
A laser Doppler velocimeter in which laser light whose frequency changes continuously at least for a fixed time duration is branched into at least two beams, and the at least two branched beams are respectively transmitted by at least one pair of optical fibers having an optical path difference therebetween, and are focused onto a region to be measured by at least one focusing device. The scattered light of the laser beams focused in the region to be measured are received by a light-receiving device via at least one incident device. At least one Doppler shift frequency in the region to be measured is calculated on the basis of the frequency of a signal of the scattered light received by the light-receiving device, the optical path difference, and a rate of change of the frequency of the laser light. The flow velocity and the direction of the flow velocity are calculated from the calculated Doppler shift frequency.
摘要:
An electromagnetic field intensity measuring apparatus comprises a sensor located in the electromagnetic field measuring place for receiving the measuring light from the optical fiber, the sensor being adapted to modulate the measuring light entering the sensor depending on the intensity of the electromagnetic field, the modulated light being then re-applied to the optical fiber; a polarization rotating device located between the measuring light generating device and the optical fiber, the polarization rotation device being operative to cause the polarized wavefront of the measuring light passed therethrough to rotate a given angle in the direction of passage; and a polarization beam splitter disposed between the measuring light generating device and the polarization rotating device, the polarization beam splitter being operative to permit only the measuring light from said measuring light generating device to pass through said polarization beam splitter and also to reflect the modulated measuring light inputted through the polarization rotating device in a predetermined direction. The electromagnetic field intensity in the measuring place can be calculated, based on the amplitude of the measuring light reflected by the polarization beam splitter.
摘要:
A compact voltage sensor with stable characteristics is provided. A measuring beam that is incident from an optical fiber is branched into first and second modulation-inducing waveguides of a wave branching/combining section within an optical integrated circuit. Phase changes of opposite sign are induced in the measuring beams propagating within the first and second modulation waveguides by applying voltages of mutually opposite sign to modulation-inducing electrodes, to induce a phase difference between the two. By reflecting the measuring beams from a reflective surface, propagating them back in the opposite direction within the first and second modulation waveguides, and passing them through the optical intensity modulation section again, thus applying a further phase modulation thereto, the phase difference between the measuring beams proceeding in the opposite direction within the first and second modulation waveguides can be made to be substantially twice the phase difference of the measuring beams before they are reflected by the reflective surface. The sensor also has a function to protect a sensor section thereof from dielectric breakdown caused by the accidental input of a high voltage.
摘要:
An electromagnetic field intensity measuring apparatus capable of measuring an electromagnetic field intensity accurately and sensitively without affection by any disturbance, including a measuring light generating section for emitting a measuring light containing first and second polarized light components which are orthogonal to each other and slightly different in frequency from each other; an optical input polarization-maintaining fiber for receiving one of the first and second polarized light components in the direction of X-axis polarization and the other polarized light component in the direction of Y-axis polarization, the optical input polarization-maintaining fiber conducting the measuring light to the electromagnetic field measuring place; a sensor section disposed in the electromagnetic field measuring place, the sensor section receiving the measuring light from the optical input polarization-maintaining fiber and modulating the phase of the incident measuring light depending on the electromagnetic field intensity; and an optical output polarization-maintaining fiber for receiving one of the first and second polarized light components from the sensor section in the direction of X-axis polarization and the other polarized light component in the direction of Y-axis polarization, the optical output polarization-maintaining fiber conducting the measuring light outside the electromagnetic field measuring place. The phase difference between the first and second polarized light components contained in the measuring light from the optical output polarization-maintaining fiber is detected to determine the electromagnetic field intensity.
摘要:
An apparatus measures the intensity of an electric field with a compact sensor equipped with a light modulater of a Mach-zender interferometer type and a condenser-type antenna. The sensor modulates coherent measuring lights propagated through branched two optical paths according to the voltage induced on the surfaces of plates of a condenser-type antenna of the sensor. The modulated lights are merged and interfered with each other and result in merged light different in intensity from the original measuring light. A waveguide-type optical integrated circuit formed in the sensor calculates the intensity of the merged light having the intensity dependent on the intensity of the magnetic field.
摘要:
A transparent vessel is filled with a mixture solution containing a first photo-curable resin of a low refractive index and a second photo-curable resin of a high refractive index different in curing mechanism. When light at a wavelength capable of curing the first photo-curable resin but incapable of curing the second photo-curable resin is applied to the mixture solution through an optical fiber, the first photo-curable resin can be cured in a state in which the second photo-curable resin is enclosed in the cured first photo-curable resin. Because the refractive index increases according to curing, a self-condensing phenomenon can be generated so that an optical path portion is formed. The optical path portion emits leakage light to its surroundings to thereby form an outer circumferential portion. Then, all uncured resins in the mixture solution are cured. The outer circumferential portion containing a high percentage of the cured first photo-curable resin serves as a clad because the refractive index of the outer circumferential portion is lower than that of the optical path portion.
摘要:
Into a mixture solution 2 of a high-refractive-index photo-curable resin A and a low-refractive-index photo-curable resin B, light capable of curing only the resin A is led through an optical fiber 1 so that a cured resin 211 of the resin A having a diameter substantially equal to the diameter of a core portion of the optical fiber is formed so as to extend from a tip of the optical fiber. Then, the residual mixture solution 2 is cured. In this manner, a module having the previously cured high-refractive-index resin 211 as an optical waveguide can be formed easily. On this occasion, the mixed state of the mixture solution 2 can be kept good enough to facilitate the formation of the high-refractive-index resin 211 when the solubility parameter δA of the high-refractive-index photo-curable resin A and the solubility parameter δB and volume fraction ΦB of the low-refractive-index photo-curable resin B satisfy the following expression (4). |δA−δB|
摘要:
Transparent parallel planar plates which are members for retaining an optical waveguide are provided erectly in an optical path of light in a transparent vessel in advance. An optical fiber is fixed into the transparent vessel while the optical fiber penetrates the transparent vessel, and an optical sensor is also disposed adjustably. Next, a first photo-curable resin solution is injected into the transparent vessel, and light with a predetermined wavelength for curing is emitted from the optical fiber so that the optical waveguide is self-formed by polymerization reaction. Because the parallel planar plates are transparent, the optical waveguide is formed so as to be extended again from the emission ports of the parallel planar plates. Finally, the optical waveguide is formed so as to reach a bottom surface of the transparent vessel. The optical waveguide has a structure in which the optical waveguide is firmly supported at four points in a forward end surface of the optical fiber, the parallel planar plates and the bottom surface of the transparent vessel. Accordingly, a firm optical waveguide device is formed.
摘要:
A method of fabricating an optical waveguide structure includes the step of introducing light into a photo-curable liquid resin. The liquid resin can be a mixture of two types of photo-curable liquid resins having different curing initiation wavelengths and different refractive indexes. The method can include dipping one end of a fiber into the liquid mixture. Light having a wavelength &lgr;1 can be radiated from the tip end of the optical fiber in order to cure one of the photo-curable liquid resins thereby forming a waveguide. Light having a different wavelength &lgr;2 can be radiated from an area surrounding the waveguide so as to cure the liquid mixture and form a cladding portion around the waveguide.
摘要:
An optical branching device includes a main waveguide and a branching waveguide. A portion of the main waveguide is bent and the branching waveguide is placed close to the bent part of the main waveguide. The branching waveguide has a taper structure such that a width of the branching waveguide is gradually decreased in a propagation direction of light. A central axis of the branching waveguide is tilted from a line extended from a straight part of the main waveguide toward the direction X, or the bending direction of the main waveguide. An input end of the branching waveguide has a normal vector tilted from the central axis of the branching waveguide toward the direction Y, an opposite direction of the bending direction of the main waveguide. With above-mentioned structures, light radiated from the bent part of the main waveguide can be launched into the input end of the branching waveguide and transmitted through the branching waveguide efficiently.