摘要:
A fuel cell of the invention has a hydrogen permeable metal layer, which is formed on a plane of an electrolyte layer that has proton conductivity and includes a hydrogen permeable metal. The fuel cell includes a higher temperature zone and a lower temperature zone that has a lower temperature than the higher temperature zone. The hydrogen permeable metal layer includes a lower temperature area A corresponding to the lower temperature zone and a higher temperature area B corresponding to the higher temperature zone. The lower temperature area A and the higher temperature area B have different settings of composition and/or layout of components. This arrangement effectively prevents potential deterioration of cell performance due to an uneven distribution of internal temperature of the fuel cell including the hydrogen permeable metal layer.
摘要:
A fuel cell of the invention has a hydrogen permeable metal layer, which is formed on a plane of an electrolyte layer that has proton conductivity and includes a hydrogen permeable metal. The fuel cell includes a higher temperature zone and a lower temperature zone that has a lower temperature than the higher temperature zone. The hydrogen permeable metal layer includes a lower temperature area A corresponding to the lower temperature zone and a higher temperature area B corresponding to the higher temperature zone. The lower temperature area A and the higher temperature area B have different settings of composition and/or layout of components. This arrangement effectively prevents potential deterioration of cell performance due to an uneven distribution of internal temperature of the fuel cell including the hydrogen permeable metal layer.
摘要:
The fuel cell 60 comprises a proton-conductive, solid electrolyte layer and a hydrogen-permeable metal layer joined to the electrolyte layer. When the fuel cell 60 generates power, reformed gas produced in a reformer 62 is supplied as fuel gas to the anode of the fuel cell 60. When power generation by the fuel cell 60 is stop, air supplied by a blower 67 is fed to the anode of the fuel cell 60, so that the fuel gas within the fuel cell 60 is replaced by air.
摘要:
The fuel cell system 1 has a reformer 2 and a fuel cell 3. The reformer 2 has a reforming reaction channel 21 that generates a hydrogen-containing reformed gas Ga and a heat exchange channel 22 for heating. The fuel cell 3 has an anode channel 32 to which the hydrogen-containing reformed gas Ga is supplied, a cathode channel 33 to which an oxygen-containing gas Gc is supplied, and an electrolyte 31 formed between them. The electrolyte 31 is a laminate of a hydrogen-separating metal layer 311 and a proton conductor layer 312. The fuel cell system 1 has a cathode offgas line 46 for feeding the cathode offgas Oc discharged from the cathode channel 33 to the reforming reaction channel 21.
摘要:
A power system of the invention includes fuel cells and a fuel gas generation system that generates a fuel gas to be supplied to the fuel cells. At the time of stopping supply of hydrogen, the fuel gas generation system selectively uses a stop process that replaces hydrogen in a hydrogen separator unit with the air for removal of hydrogen and a pause process that allows hydrogen to remain in the hydrogen separator unit. The stop process is selected when the fuel gas generation system stops the supply of hydrogen for a long time period. The pause process is selected when the fuel gas generation system temporarily stops the supply of hydrogen. The arrangement of the invention desirably shortens a restart time of the fuel gas generation system and reduces a potential energy loss.
摘要:
A technology for preventing degradation of a hydrogen permeable metal layer in a fuel cell 210 is provided. A fuel cell system 200 including a fuel cell 210 with an anode which has the hydrogen permeable metal layer comprises a fuel cell controller 230 for controlling the operation status of the fuel cell system 200, a temperature parameter acquisition section for acquiring a temperature parameter of the hydrogen permeable metal layer, and a hydrogen permeable metal layer degradation prevention section which reduces the hydrogen partial pressure in an anode channel 212 for supplying fuel gas to the anode. If a temperature of the hydrogen permeable metal layer represented by the temperature parameter deviates from a specified temperature range, the fuel cell controller 230 cause the hydrogen permeable metal layer degradation prevention section to operate for preventing degradation of the hydrogen permeable metal layer.
摘要:
A technology for preventing degradation of a hydrogen permeable metal layer in a fuel cell 210 is provided. A fuel cell system 200 including a fuel cell 210 with an anode which has the hydrogen permeable metal layer comprises a fuel cell controller 230 for controlling the operation status of the fuel cell system 200, a temperature parameter acquisition section for acquiring a temperature parameter of the hydrogen permeable metal layer, and a hydrogen permeable metal layer degradation prevention section which reduces the hydrogen partial pressure in an anode channel 212 for supplying fuel gas to the anode. If a temperature of the hydrogen permeable metal layer represented by the temperature parameter deviates from a specified temperature range, the fuel cell controller 230 cause the hydrogen permeable metal layer degradation prevention section to operate for preventing degradation of the hydrogen permeable metal layer.
摘要:
A method of manufacturing a hydrogen separation membrane with a carrier is characterized by including a first step of providing, between the hydrogen separation membrane and the carrier that supports the hydrogen separation membrane, a low-hardness metal membrane having a hardness that is lower than the hardness of the hydrogen separation membrane, and a second step of joining the hydrogen separation membrane, the low-hardness metal membrane, and the carrier by a cold joining method. In this case, it is possible to suppress the deformation of the hydrogen separation membrane, the low-hardness metal membrane, and the carrier and, as a result, it is possible to prevent damaging of the hydrogen separation membrane. The adhesion of the contact between the hydrogen separation membrane and the carrier is also improved. The result is that it is not necessary to increase the severity of the cold joining conditions.
摘要:
A method of manufacturing a hydrogen separation membrane with a carrier is characterized by including a first step of providing, between the hydrogen separation membrane and the carrier that supports the hydrogen separation membrane, a low-hardness metal membrane having a hardness that is lower than the hardness of the hydrogen separation membrane, and a second step of joining the hydrogen separation membrane, the low-hardness metal membrane, and the carrier by a cold joining method. In this case, it is possible to suppress the deformation of the hydrogen separation membrane, the low-hardness metal membrane, and the carrier and, as a result, it is possible to prevent damaging of the hydrogen separation membrane. The adhesion of the contact between the hydrogen separation membrane and the carrier is also improved. The result is that it is not necessary to increase the severity of the cold joining conditions.
摘要:
A fuel cell includes a joint portion A in which a first conductive separator, an electrolyte-strengthening substrate and a second conductive separator are jointed in order with a brazing material. The electrolyte-strengthening substrate is formed so as to be larger than a joint area of the first conductive separator and a joint area of the second conductive separator in the joint portion. The electrolyte-strengthening substrate has an insulating property at least at an area where the electrolyte-strengthening substrate contacts with the brazing material.