摘要:
Provided is a method of manufacturing a nitride semiconductor light-emitting device including the step of contacting a surfactant material with the surface of an n-type nitride semiconductor layer or the surface of a p-type nitride semiconductor layer before the growth of an active layer, or, with a grown crystal surface during or after the growth of the active layer. According to this manufacturing method, a nitride semiconductor light-emitting device having higher light-emitting efficiency can be obtained.
摘要:
Provided is a method of manufacturing a nitride semiconductor light-emitting device including the step of contacting a surfactant material with the surface of an n-type nitride semiconductor layer or the surface of a p-type nitride semiconductor layer before the growth of an active layer, or, with a grown crystal surface during or after the growth of the active layer. According to this manufacturing method, a nitride semiconductor light-emitting device having higher light-emitting efficiency can be obtained.
摘要:
In a method of producing a nitride semiconductor light-emitting device including a nitride semiconductor active layer (105) held between an n-type nitride semiconductor layer (103, 104) and a p-type nitride semiconductor layer (106 to 108) on a substrate (101), at least any one of the n-type layer, the active layer and the p-type layer includes a multilayer film structure, and a surfactant material is supplied to a crystal growth surface just before, during or after crystal growth of a layer included in the multilayer film structure.
摘要:
In a method of producing a nitride semiconductor light-emitting device including a nitride semiconductor active layer (105) held between an n-type nitride semiconductor layer (103, 104) and a p-type nitride semiconductor layer (106 to 108) on a substrate (101), at least any one of the n-type layer, the active layer and the p-type layer includes a multilayer film structure, and a surfactant material is supplied to a crystal growth surface just before, during or after crystal growth of a layer included in the multilayer film structure.
摘要:
A nitride semiconductor light-emitting device comprises a substrate, and a first n-type nitride semiconductor layer, an emission layer, a p-type nitride semiconductor layer, a metal layer and a second n-type nitride semiconductor layer stacked on the substrate successively from the side closer to the substrate, with an electrode provided on the surface of the second n-type nitride semiconductor layer or above the surface of the second n-type nitride semiconductor layer. The metal layer is preferably made of a hydrogen-storage alloy.
摘要:
A nitride semiconductor light-emitting device comprises a substrate, and a first n-type nitride semiconductor layer, an emission layer, a p-type nitride semiconductor layer, a metal layer and a second n-type nitride semiconductor layer stacked on the substrate successively from the side closer to the substrate, with an electrode provided on the surface of the second n-type nitride semiconductor layer or above the surface of the second n-type nitride semiconductor layer. The metal layer is preferably made of a hydrogen-storage alloy.
摘要:
A nitride semiconductor light-emitting device includes an n type nitride semiconductor layer, a light-emitting layer formed on the n type nitride semiconductor layer, a first p type nitride semiconductor layer formed on the light-emitting layer, an intermediate layer formed on the first p type nitride semiconductor layer to alternately cover and expose a surface of the first p type nitride semiconductor layer, and a second p type nitride semiconductor layer formed on the intermediate layer. The intermediate layer is made of a compound containing Si and N as constituent elements.
摘要:
An object is to provide a method of manufacturing a nitride semiconductor light emitting device having high light emission output and allowing decrease in forward voltage (Vf). The invention is directed to a method of manufacturing a nitride semiconductor light emitting device including at least an n-type nitride semiconductor, a p-type nitride semiconductor and an active layer formed between the n-type nitride semiconductor and the p-type nitride semiconductor, wherein the n-type nitride semiconductor includes at least an n-type contact layer and an n-side GaN layer, the n-side GaN layer consists of a single or a plurality of undoped and/or n-type layers, and the method includes the step of forming the n-side GaN layer by organic metal vapor deposition with the growth temperature set within the range of 500 to 1000° C., such that the n-side GaN layer is formed between the n-type contact layer and the active layer.
摘要:
The present invention is a semiconductor light emitting device including an n-type semiconductor layer, an active layer, a first p-type semiconductor layer between the n-type semiconductor layer and the active layer, and a second p-type semiconductor layer on the opposite side of the first p-type semiconductor layer from the active layer. Further, the present invention is a nitride semiconductor light emitting device including an n-type nitride semiconductor layer, a nitride semiconductor active layer, a first p-type nitride semiconductor layer between the n-type nitride semiconductor layer and the nitride semiconductor active layer, and a second p-type nitride semiconductor layer on the opposite side of the first p-type nitride semiconductor layer from the nitride semiconductor active layer.
摘要:
The present invention presents a nitride semiconductor light emitting device including a substrate, a first n-type nitride semiconductor layer, a light emitting layer, a p-type nitride semiconductor layer, a p-type nitride semiconductor tunnel junction layer, an n-type nitride semiconductor tunnel junction layer, and a second n-type semiconductor layer, in which the p-type and n-type nitride semiconductor tunnel junction layers form a tunnel junction, at least one of the p-type and n-type nitride semiconductor tunnel junction layers contains In, at least one of In-containing layers contacts with a layer having a larger band gap than the In-containing layer, and at least one of shortest distances between an interface of the In-containing layer and the layer having a larger band gap and an interface of the p-type and n-type nitride semiconductor tunnel junction layers is less than 40 nm.