摘要:
In a cooling structure for a recovery-type air-cooled gas turbine combustor having a recovery-type air-cooling structure that bleeds, upstream of the combustor, and pressurizes compressed air supplied from a compressor, that uses the bled and pressurized air to cool a wall, and that recovers and reuses the bled and pressurized air as combustion air for burning fuel in the combustor together with a main flow of the compressed air, wall cooling in which cooling air is supplied to cooling air passages formed in the wall of the combustor to perform cooling involves a downstream wall region, closer to a turbine, that is cooled using the bled and pressurized air as the cooling air and an upstream wall region, closer to a burner, that is cooled using, as the cooling air, bled compressed air bled from a main flow of the compressed air through a housing inner space.
摘要:
In a cooling structure for a recovery-type air-cooled gas turbine combustor having a recovery-type air-cooling structure that bleeds, upstream of the combustor, and pressurizes compressed air supplied from a compressor, that uses the bled and pressurized air to cool a wall, and that recovers and reuses the bled and pressurized air as combustion air for burning fuel in the combustor together with a main flow of the compressed air, wall cooling in which cooling air is supplied to cooling air passages formed in the wall of the combustor to perform cooling involves a downstream wall region, closer to a turbine, that is cooled using the bled and pressurized air as the cooling air and an upstream wall region, closer to a burner, that is cooled using, as the cooling air, bled compressed air bled from a main flow of the compressed air through a housing inner space.
摘要:
Provided is a gas turbine capable of achieving high-speed startup of the gas turbine through quick operation control of an ACC system during startup of the gas turbine, improving the cooling efficiency of turbine stationary components, and quickly carrying out an operation required for cat back prevention during shutdown of the gas turbine. Included are a pressurizing device (40) connected to a branching channel (42) branching from the discharge side of a compressor (11) and capable of carrying out an operation for introducing and pressurizing air independently from the compressor (11); a temperature-control-medium supply channel (43) that guides compressed air pressurized at the pressuring device (40) to a turbine-cooling-medium channel (50) provided in stationary components of a turbine (13); and a temperature-control-medium return channel (44) that guides the compressed air that has passed through the turbine-cooling-medium channel (50) to the discharge side of the compressor (11) such that the flows are combined, and the pressurizing device (40) is operated at startup of the gas turbine and in preparation immediately before startup to carry out temperature-raising and cooling by letting the compressed air flow in the turbine-cooling-medium channel (50). The pressurizing device (40) is operated during shutdown of the gas turbine to exhaust the high-temperature gas remaining in the turbine (13).
摘要:
Provided is a gas turbine capable of achieving high-speed startup of the gas turbine through quick operation control of an ACC system during startup of the gas turbine, improving the cooling efficiency of turbine stationary components, and quickly carrying out an operation required for cat back prevention during shutdown of the gas turbine. Included are a pressurizing device (40) connected to a branching channel (42) branching from the discharge side of a compressor (11) and capable of carrying out an operation for introducing and pressurizing air independently from the compressor (11); a temperature-control-medium supply channel (43) that guides compressed air pressurized at the pressuring device (40) to a turbine-cooling-medium channel (50) provided in stationary components of a turbine (13); and a temperature-control-medium return channel (44) that guides the compressed air that has passed through the turbine-cooling-medium channel (50) to the discharge side of the compressor (11) such that the flows are combined, and the pressurizing device (40) is operated at startup of the gas turbine and in preparation immediately before startup to carry out temperature-raising and cooling by letting the compressed air flow in the turbine-cooling-medium channel (50). The pressurizing device (40) is operated during shutdown of the gas turbine to exhaust the high-temperature gas remaining in the turbine (13).
摘要:
By using two probe optical systems for measurement by disposing the probe optical systems with a test object sandwiched therebetween, an optical path length of light transmitted through the test object which is identified locally is calculated using an interference signal thereof. In addition, a geometrical thickness of the same part is calculated by measuring positions of the probe optical systems, whereby two calculated values are obtained. Based on the values and a calculated value for a reference object, a refractive index distribution of the test object is obtained.
摘要:
An inspection method for evaluating the performance of an optical component at high precision is provided. According to the inspection method, a first light beam 24 and a second light beam 26 both having different phases are generated from light which has passed through an optical component 18, and are interfered with each other to form an interference region 30. A linear line 66, a linear line 70 and linear lines 72 are set within the interference region 30 so as to determine a distribution of light intensities on each of the linear lines 72. Then, a frequency corresponding to the maximal light intensity is determined. Further, an approximated liner line or an approximated curved line is determined from a plurality of frequencies determined for each of the linear line 72. Then, the aberration of the optical component is evaluated based on the coefficient of the approximated linear or curved line.
摘要:
A lens evaluation method includes diffracting light derived from a lens so that two diffracted rays of different orders (e.g., a 0th-order diffracted ray and a +1st-order diffracted ray) interfere with each other, thereby obtaining a shearing interference figure, and changing phases of the diffracted rays. The method also includes in the shearing interference figure, determining phases of light intensity changes at a plurality of measuring points on a measuring line which passes through a midpoint of a line segment interconnecting optical axes of the two diffracted rays, and determining characteristics (defocus amount, coma, astigmatism, spherical aberration and a higher-order aberration) of the lens based on the phases.
摘要:
A method for manufacturing an optical unit (10) having an optical element (22) and a support member (12) supporting the optical element. According to the method, at least one of the optical element (22) and the support member (12) is deformed, securing the optical element (22) and the support member (12) together.
摘要:
A back light illuminator for liquid crystal display apparatus comprises a fluorescent lamp, a light guide member, and a reflection plate enclosing the fluorescent lamp and an incident portion of the light guide member so as to reflect light rays toward the incident portion of the light guide member. The reflection plate has at least a curved portion having a parabolic cross-section or a elliptical cross-section so as not to reflect the light rays in a direction to the fluorescent lamp. Thus, absorption of reflected light by the fluorophor of the fluorescent lamp is minimized, and the luminance of the back light illuminator is increased.
摘要:
An efficient, luminous and energy-saving panel-form illuminating system suitable for mass-production, comprising at least a photoconductor, a linear light source at one side of the photoconductor, and a reflector; wherein grooves or protrusions are formed on the bottom surface of the photoconductor.