Abstract:
A sealed battery including: an electrode group 4 formed by winding or stacking a positive electrode plate 1 and a negative electrode plate 2 with a separator 3 interposed between the positive electrode plate 1 and the negative electrode plate 2, and housed in a battery case 5, an opening of the battery case 5 being sealed with a sealing plate, wherein a lead 11 extending from one of the electrode plates in the electrode group 4 is laser-welded to the sealing plate 10, and a melting width of an end section 13 of a welded portion 9 between the lead 11 and the sealing plate 10 is smaller than a melting width of a center section of the welded portion 9.
Abstract:
First and second laser beams from two different laser systems are superposed and irradiated as a hybrid laser beam on a workpiece. The effective spot size of second laser beam on the workpiece is smaller than that of the first laser beam. Thereby, a workpiece of a metal material having high reflectivity is processed with a sufficient weld penetration depth and width, and at high speed.
Abstract:
A sealed battery includes electrode group 4 formed by winding or stacking a positive electrode plate 1 and a negative electrode plate 2 with a separator 3 interposed between the positive electrode plate 1 and the negative electrode plate 2, the electrode group being housed in a battery case 5, and an opening of the battery case 5 being sealed with a sealing plate 10, wherein a lead 11 extending from one of the electrode plates in the electrode group 4 is laser welded to the sealing plate 10, and a welding portion 14 between the lead 11 and the sealing plate 10 has a linear shape straddling at least an end portion of the lead 11.
Abstract:
An electrode group 4 formed by stacking or winding a positive electrode plate 1 and a negative electrode plate 2 with a separator 3 interposed therebetween, is housed in a battery case 5. An opening of the battery case 5 is sealed with a sealing plate 10. A lead 11 extending from one of the positive and negative electrode plates in the electrode group 4 is laser-welded to the sealing plate 10 by application of a laser beam 12 having a spot diameter smaller than a thickness of the lead 11.
Abstract:
A plasma display (PDP) manufacturing method and display panel includes a display electrode forming step of forming a plurality of pairs of display electrodes in parallel lines on a main surface of a first plate, and a plate sealing step of aligning the main surface of the first plate with a main surface of a second plate, and sealing the first and second plates together. The display electrodes are formed by coating the main surface of the first plate with display electrode material, and performing laser ablation on parts of the display electrode material, while the remaining parts of the display electrode material form the display electrodes.
Abstract:
A method is disclosed for manufacturing a lens array optical system including a flat glass plate and lenses each of which has a flat surface and a curved surface. The method includes the steps of removably fixing each lens with a first adhesive agent to a lens holder having lens holding portions corresponding to the curved surfaces of the lenses, polishing the flat surface of the lenses and the lens holder so that the polished flat surface of the lenses are flush with a polished flat surface of the lens holder, fixing the lenses to said flat glass plate with a second adhesive agent by pressing the lenses against the flat glass plate and hardening the second adhesive agent, and removing the lens holder from the lenses.
Abstract:
A laser beam machining device having aspherical lenses for uniformity of the cross section intensity of a laser beam emitted from a laser oscillator, and converging optical unit composed of a plurality of converging lenses disposed to be aligned in single or plural rows on a plane in the optical path of the uniform laser beam, whereby uniform machining can be performed in the middle and at the edges of the machining area and the allowable machining area can be made wider.
Abstract:
A battery module 8 containing parallel blocks 9 connected to a protection circuit via a lead plate 2, wherein the parallel blocks 9 are welded to both sides of the lead plate without bending the lead plate 2 into a U shape. Thus it is possible to reduce the length of the lead plate 2 and suppress a voltage drop on the lead plate 2. Further, since the lead plate 2 is not bent into a U shape, the assembling accuracy of the battery module is improved and the battery module is easily packaged with a small size.
Abstract:
A laser apparatus is provided which is capable of achieving deep penetration into an aluminum-like metal material without causing welding defects such as spatters or cracks and performing high-speed pulse seam welding. The laser apparatus includes a pulse power source that generates a current signal and a mask signal for masking a fluctuation component included in the current signal, and which supplies a current signal in which a fluctuation component has been masked by the mask signal to a YAG pulsed laser oscillator. In addition, the laser apparatus sets the spot shape of a CW laser light oscillated by a CW laser oscillator to a rhombic streamlined shape, and causes a focus spot of the CW laser light to include a circular focus spot of a pulsed laser light.
Abstract:
A ratio of a length of resin flow-in to a radius of an optical component is not larger than 0.25, and gas is blown directly against a laser irradiated part radially and diagonally downward from an upside position corresponding to a center of the optical component. A laser line beam having longer sides extending in a direction along an inner wall is cast by a laser radiation device while being moved in the direction of the longer sides.