Abstract:
A method for accelerating a vehicle driving forward, in which the vehicle has a propulsion system including a combustion engine with an output shaft (2a), a gearbox (3) with an input shaft (3a), an electric machine (9) comprising a stator and a rotor, and a planetary gear comprising a sun gear (10), a ring gear (11) and a planet wheel carrier (12). When accelerating the vehicle the torque of the electric machine is controlled and the rotational speed of the combustion engine is controlled until the components of the planetary gear have the same rotational speed and may be interlocked.
Abstract:
A method for controlling a drive system of a vehicle, the drive system including a combustion engine with an output shaft, a gearbox with an input shaft, an electrical machine including a stator and a rotor, and a planetary gear with a sun gear, a ring gear and a planet wheel carrier. The combustion engine may be active or inactive. A braking device may be active or passive. The planetary gear may be released or locked. The method includes arranging the planetary gear in the released state, the combustion engine in inactive state, the braking device in active state, and, when information on a requested torque for the operation of the vehicle is received, controlling the electrical machine to provide the requested torque with the combustion engine inactive, the braking device active and the planetary gear released.
Abstract:
A method for, during creep mode, performing gearshift in a vehicle powertrain comprising a combustion engine, a gearbox, and a clutch is provided. The method comprises, in response to a request for gearshift, disconnecting the combustion engine from the gearbox by opening the clutch. The method further comprises, when the combustion engine is disconnected from the gearbox, shifting the gearbox and controlling the speed of the combustion engine to a target speed. Said target speed constitutes a combustion engine speed corresponding a desired combustion engine torque for completing a torque ramp during closing of the clutch. The method further comprises connecting the combustion engine to the gearbox by closing the clutch. A control device configured to perform the method and a vehicle comprising the control device are also provided.
Abstract:
A method and a system for controlling a backlash of a powertrain included in a vehicle in connection with a gear shifting operation is presented. The method comprises: controlling, in connection with a first gear shifting operation, a clutch included in the powertrain to a slipping position, in which slipping position the clutch transfers a slipping torque that is less than a torque being transferred in a closed position for the clutch; analyzing a change of a rotational speed for an input shaft of a gearbox included in the powertrain; determining a position for the clutch, for which position the change of the rotational speed has a value corresponding to a backlash torque, the backlash torque having a predetermined value for eliminating the backlash; and utilizing the determined clutch position for controlling the clutch in connection with a second subsequent gear shifting operation.
Abstract:
A method for starting a combustion engine (2) in a propulsion system (1) of a hybrid vehicle, the propulsion system includes a planetary gear having three components: a sun gear (10), a ring gear (11) and a planet wheel carrier (12). The output shaft (2a) of the combustion engine connected to a first component of the planetary gear, an input shaft (3a) of a gearbox (3) connected to a second component of the planetary gear and a rotor (9b) of an electric machine (9) connected to a third component of the gearbox. The vehicle is set in an initial position with a suitable gear engaged in the gearbox and with a brake acting on the input shaft of the gearbox. After the electric machine is controlled so that the ring gear is brought into a negative rotation speed (n3) and the output shaft (2a) of the combustion engine is, via the sun gear, brought to rotate with a positive rotation speed (n1) so that the combustion engine may be started.