摘要:
A capacitor has a tantalum oxynitride film. One method for making the film comprises forming a bottom plate electrode and then forming a tantalum oxide film on the bottom plate electrode. Nitrogen is introduced to form a tantalum oxynitride film. A top plate electrode is formed on the tantalum oxynitride film. Embodiments include a method of operating an antifuse, comprising applying a voltage across electrodes of a capacitor having a tantalum oxynitride film and forming a hole in the tantalum oxynitride film.
摘要:
A capacitor has a tantalum oxynitride film. One method for making the film comprises forming a bottom plate electrode and then forming a tantalum oxide film on the bottom plate electrode. Nitrogen is introduced to form a tantalum oxynitride film. A top plate electrode is formed on the tantalum oxynitride film.
摘要:
A capacitor has a tantalum oxynitride film. One method for making the film comprises forming a bottom plate electrode and then forming a tantalum oxide film on the bottom plate electrode. Nitrogen is introduced to form a tantalum oxynitride film. A top plate electrode is formed on the tantalum oxynitride film.
摘要:
A capacitor has a tantalum oxynitride film. One method for making the film comprises forming a bottom plate electrode and then forming a tantalum oxide film on the bottom plate electrode. Nitrogen is introduced to form a tantalum oxynitride film. A top plate electrode is formed on the tantalum oxynitride film.
摘要:
In a capacitor forming method, a first capacitor electrode is formed over a substrate. A high K oxygen containing capacitor dielectric layer is formed over the first capacitor electrode. A first annealing of the high K capacitor dielectric layer is conducted at a temperature of at least about 500.degree. C. in a substantially non-oxidizing atmosphere. After the first annealing, second annealing the high K capacitor dielectric layer occurs at a temperature of less than or equal to about 500.degree. C. in an oxidizing atmosphere. A second capacitor electrode is formed over the high K oxygen containing capacitor dielectric layer, preferably after the second annealing. In another considered implementation, the capacitor dielectric layer is annealed in multiple steps including at least two different temperatures. A second capacitor electrode is formed over the high K oxygen containing dielectric layer, with the substrate not being exposed to a gaseous oxygen containing atmosphere at a temperature of greater than about 500.degree. C. between the capacitor dielectric layer formation and formation of the second capacitor electrode. The invention also contemplates dielectric layer processing apart from capacitor formation, and the fabrication of DRAM circuitry.
摘要:
Capacitors and methods of forming capacitors are disclosed. In one implementation, a capacitor comprises a capacitor dielectric layer comprising Ta2O5 formed over a first capacitor electrode. A second capacitor electrode is formed over the Ta2O5 capacitor dielectric layer. Preferably, at least a portion of the second capacitor electrode is formed over and in contact with the Ta2O5 in an oxygen containing environment at a temperature of at least about 175° C. Chemical vapor deposition is one example forming method. The preferred second capacitor electrode comprises a conductive metal oxide. A more preferred second capacitor electrode comprises a conductive silicon comprising layer, over a conductive titanium comprising layer, over a conductive metal oxide layer. A preferred first capacitor electrode comprises a conductively doped Si—Ge alloy. Preferably, a Si3N4 layer is formed over the first capacitor electrode. DRAM cells and methods of forming DRAM cells are disclosed.
摘要翻译:公开了形成电容器的电容器和方法。 在一个实施方式中,电容器包括在第一电容器电极上形成的包括Ta 2 O 5的电容器介电层。 在Ta 2 O 5电容器电介质层上形成第二电容器电极。 优选地,第二电容器电极的至少一部分在含氧环境中在至少约175℃的温度下形成在Ta 2 O 5上方并与Ta 2 O 5接触。化学气相沉积是一种示例性形成方法。 优选的第二电容器电极包括导电金属氧化物。 更优选的第二电容器电极包括在导电金属氧化物层上方的导电硅包含层,在导电的钛包覆层之上。 优选的第一电容器电极包括导电掺杂的Si-Ge合金。 优选地,在第一电容器电极上形成Si 3 N 4层。 公开DRAM单元和形成DRAM单元的方法。
摘要:
Capacitors and methods of forming capacitors are disclosed. In one implementation, a capacitor includes a capacitor dielectric layer including Ta2O5 formed over a first capacitor electrode. A second capacitor electrode is formed over the Ta2O5 capacitor dielectric layer. Preferably, at least a portion of the second capacitor electrode is formed over and in contact with the Ta2O5 in an oxygen containing environment at a temperature of at least about 175° C. Chemical vapor deposition is one example forming method. The preferred second capacitor electrode includes a conductive metal oxide. A more preferred second capacitor electrode includes a conductive silicon including layer, over a conductive titanium including layer, over a conductive metal oxide layer. A preferred first capacitor electrode includes a conductively doped Si—Ge alloy. Preferably, a Si3N4 layer is formed over the first capacitor electrode. DRAM cells and methods of forming DRAM cells are disclosed.
摘要翻译:公开了形成电容器的电容器和方法。 在一个实施方式中,电容器包括在第一电容器电极上形成的包括Ta 2 O 5的电容器介电层。 在Ta 2 O 5电容器电介质层上形成第二电容器电极。 优选地,第二电容器电极的至少一部分在含氧环境中在至少约175℃的温度下形成在Ta 2 O 5上方并与Ta 2 O 5接触。化学气相沉积是一种示例性形成方法。 优选的第二电容器电极包括导电金属氧化物。 更优选的第二电容器电极在导电金属氧化物层之上包括在导电的钛包覆层之上的包括导电硅的层。 优选的第一电容器电极包括导电掺杂的Si-Ge合金。 优选地,在第一电容器电极上形成Si 3 N 4层。 公开DRAM单元和形成DRAM单元的方法。
摘要:
Capacitors and methods of forming capacitors are disclosed. In one implementation, a capacitor comprises a capacitor dielectric layer comprising Ta2O5 formed over a first capacitor electrode. A second capacitor electrode is formed over the Ta2O5 capacitor dielectric layer. Preferably, at least a portion of the second capacitor electrode is formed over and in contact with the Ta2O5 in an oxygen containing environment at a temperature of at least about 175° C. Chemical vapor deposition is one example forming method. The preferred second capacitor electrode comprises a conductive metal oxide. A more preferred second capacitor electrode comprises a conductive silicon comprising layer, over a conductive titanium comprising layer, over a conductive metal oxide layer. A preferred first capacitor electrode comprises a conductively doped Si-Ge alloy. Preferably, a Si3N4 layer is formed over the first capacitor electrode. DRAM cells and methods of forming DRAM cells are disclosed.
摘要翻译:公开了形成电容器的电容器和方法。 在一个实施方式中,电容器包括在第一电容器电极上形成的包括Ta 2 O 5的电容器介电层。 在Ta 2 O 5电容器电介质层上形成第二电容器电极。 优选地,第二电容器电极的至少一部分在含氧环境中在至少约175℃的温度下形成在Ta 2 O 5上方并与Ta 2 O 5接触。化学气相沉积是一种示例性形成方法。 优选的第二电容器电极包括导电金属氧化物。 更优选的第二电容器电极包括在导电金属氧化物层上方的导电硅包含层,在导电的钛包覆层之上。 优选的第一电容器电极包括导电掺杂的Si-Ge合金。 优选地,在第一电容器电极上形成Si 3 N 4层。 公开DRAM单元和形成DRAM单元的方法。
摘要:
The invention encompasses methods of processing internal surfaces of a chemical vapor deposition reactor. In one implementation, material is deposited over internal surfaces of a chemical vapor deposition reactor while processing semiconductor substrates therein. The deposited material is treated with atomic oxygen. After the treating, at least some of the deposited material is etched from the reactor internal surfaces. In one embodiment, first etching is conducted of some of the deposited material from the reactor internal surfaces. After the first etching, remaining deposited material is treated with atomic oxygen. After the treating, second etching is conducted of at least some of the remaining deposited material from the reactor internal surfaces. In one embodiment, the deposited material is first treated with atomic oxygen. After the first treating, first etching is conducted of some of the deposited material from the reactor internal surfaces. After the first etching, second treating is conducted of remaining deposited material with atomic oxygen. After the second treating, second etching is conducted of at least some of the remaining deposited material from the reactor internal surfaces.
摘要:
The invention encompasses methods of processing internal surfaces of a chemical vapor deposition reactor. In one implementation, material is deposited over internal surfaces of a chemical vapor deposition reactor while processing semiconductor substrates therein. The deposited material is treated with atomic oxygen. After the treating, at least some of the deposited material is etched from the reactor internal surfaces. In one embodiment, first etching is conducted of some of the deposited material from the reactor internal surfaces. After the first etching, remaining deposited material is treated with atomic oxygen. After the treating, second etching is conducted of at least some of the remaining deposited material from the reactor internal surfaces. In one embodiment, the deposited material is first treated with atomic oxygen. After the first treating, first etching is conducted of some of the deposited material from the reactor internal surfaces. After the first etching, second treating is conducted of remaining deposited material with atomic oxygen. After the second treating, second etching is conducted of at least some of the remaining deposited material from the reactor internal surfaces.