Abstract:
A dual-slot waveguide receives energy from a coupling waveguide. The dual-slot waveguide includes first and second light propagating regions of low-index material located side-by-side in a direction normal to a light propagation direction. Inner sides of the first and second light propagating regions are separated by a first region of a high-index material. Second and third regions of the high-index material surround outer sides of the first and second light propagating regions. A near-field transducer receives portions of the energy from the first and second light propagating regions.
Abstract:
A near-field transducer or heat sink is formed via a first process. The near-field transducer or heat sink is transfer-printed to a read/write head via a second process.
Abstract:
A near-field transducer or heat sink is formed via a first process. The near-field transducer or heat sink is transfer-printed to a read/write head via a second process.
Abstract:
A recording head includes a layer of plasmonic metal deposited on a surface of the recording head. One or more non-self-supporting layers of crystalline material are attached to the plasmonic metal, the one or more layers of crystalline materials configured to form an active region of a laser. A waveguide is configured to receive plasmons from the laser and direct the plasmons to a recording medium.
Abstract:
A mounting surface of a read/write head is prepared to receive an epitaxial layer. The mounting surface is proximate a waveguide of the read/write head, and the waveguide is configured to receive an optical output from the epitaxial layer. The epitaxial layer is transfer printed on to the mounting surface. The mounting surface maintains a vertical alignment between the optical output and the waveguide. The epitaxial layer is processed to form a laser integrated with the read/write head.
Abstract:
A dual-slot waveguide receives energy from a coupling waveguide. The dual-slot waveguide includes first and second light propagating regions of low-index material located side-by-side in a direction normal to a light propagation direction. Inner sides of the first and second light propagating regions are separated by a first region of a high-index material. Second and third regions of the high-index material surround outer sides of the first and second light propagating regions. A near-field transducer receives portions of the energy from the first and second light propagating regions.