Abstract:
A memory unit includes a giant magnetoresistance cell electrically coupled between a write bit line and a write source line. The giant magnetoresistance cell includes a free magnetic layer. A magnetic tunnel junction data cell is electrically coupled between a read bit line and a read source line. The magnetic tunnel junction data cell includes the free magnetic layer. A write current passes through the giant magnetoresistance cell to switche the giant magnetoresistance cell between a high resistance state and a low resistance state. The magnetic tunnel junction data cell is configured to switch between a high resistance state and a low resistance state by magnetostatic coupling with the giant magnetoresistance cell, and be read by a read current passing though the magnetic tunnel junction data cell.
Abstract:
A magnetic sensor assembly includes first and second shields each comprised of a magnetic material. The first and second shields define a physical shield-to-shield spacing. A sensor stack is disposed between the first and second shields and includes a seed layer adjacent the first shield, a cap :layer adjacent the second shield, and a magnetic sensor between the seed layer and the cap layer. At least a portion of the seed layer and/or the cap layer comprises a magnetic material to provide an effective shield-to-shield spacing of the magnetic sensor assembly that is less than the physical shield-to-shield spacing.
Abstract:
A memory unit includes a giant magnetoresistance cell electrically coupled between a write bit line and a write source line. The giant magnetoresistance cell includes a free magnetic layer. A magnetic tunnel junction data cell is electrically coupled between a read bit line and a read source line. The magnetic tunnel junction data cell includes the free magnetic layer. A write current passes through the giant magnetoresistance cell to switch the giant magnetoresistance cell between a high resistance state and a low resistance state. The magnetic tunnel junction data cell is configured to switch between a high resistance state and a low resistance state by magnetostatic coupling with the giant magnetoresistance cell, and be read by a read current passing though the magnetic tunnel junction data cell.
Abstract:
A magnetic sensor assembly includes first and second shields each comprised of a magnetic material. The first and second shields define a physical shield-to-shield spacing. A sensor stack is disposed between the first and second shields and includes a seed layer adjacent the first shield, a cap layer adjacent the second shield, and a magnetic sensor between the seed layer and the cap layer. At least a portion of the seed layer and/or the cap layer comprises a magnetic material to provide an effective shield-to-shield spacing of the magnetic sensor assembly that is less than the physical shield-to-shield spacing.
Abstract:
Programmable metallization memory cells include an electrochemically active electrode, an inert electrode and an internal layer between the electrochemically active electrode and the inert electrode. The internal layer having a fast ion conductor material and an apertured layer having a plurality of apertures defined by an electrically insulating material. Each aperture defines at least a portion of a column of fast ion conductor material having superionic clusters.