Abstract:
A starting system for a hybrid vehicle includes a pinion gear driven by a starter motor and a drive plate having a set of teeth in constant meshed engagement with the pinion gear. A one-way clutch assembly drivingly interconnects the drive plate and an engine crankshaft and includes an inner race fixed for rotation with the crankshaft, an outer race coupled for rotation with the drive plate and a plurality of rollers positioned radially therebetween. The outer race includes a first set of teeth drivingly engaging a second set of teeth on the drive plate and arranged to allow the outer race to rotate about an axis misaligned with an axis of rotation of the drive plate. A spring engages the drive plate and the outer race to urge the first and second sets of teeth into alignment with one another.
Abstract:
A starting system for a hybrid vehicle includes a pinion gear driven by a starter motor and a drive plate having a set of teeth in constant meshed engagement with the pinion gear. A one-way clutch assembly drivingly interconnects the drive plate and an engine crankshaft and includes an inner race fixed for rotation with the crankshaft, an outer race coupled for rotation with the drive plate and a plurality of rollers positioned radially therebetween. The outer race includes a first set of teeth drivingly engaging a second set of teeth on the drive plate and arranged to allow the outer race to rotate about an axis misaligned with an axis of rotation of the drive plate. A spring engages the drive plate and the outer race to urge the first and second sets of teeth into alignment with one another.
Abstract:
A hybrid vehicle starting system includes a pinion gear driven by a starter motor, and a drive plate having a set of teeth in constant meshed engagement with the pinion gear. A one-way clutch drivingly interconnects the drive plate and an engine crankshaft and includes an inner race fixed for rotation with the crankshaft, an outer race fixed for rotation with the drive plate, and a plurality of rollers positioned radially therebetween. A cage positions the rollers in circumferentially spaced apart alignment with outer cam surfaces. A split ring is positioned within grooves on each of the inner race and the outer race. The split ring is fitted within one of the grooves at a first clearance and fitted within the other of the grooves at a predetermined second clearance at least ten times the first clearance to isolate the outer race from vibrations of the inner race.
Abstract:
A starting system for a hybrid vehicle includes an internal combustion engine having a crankshaft rotatably supported within an engine block. The starting system includes a pinion gear driven by a starter motor, a drive plate having a set of teeth in constant meshed engagement with the pinion gear, and a one-way clutch. The one-way clutch is adapted to selectively drivingly interconnect the drive plate and the crankshaft. The clutch includes an inner race adapted to be fixed for rotation with the crankshaft, an outer race coupled for rotation with the drive plate, and a plurality of roller elements positioned radially therebetween. A fastener couples the drive plate to the outer race and compresses an elastomeric damper between the drive plate and the outer race.
Abstract:
A starting system for a hybrid vehicle includes an internal combustion engine having a crankshaft rotatably supported within an engine block. The starting system includes a pinion gear driven by a starter motor, a drive plate having a set of teeth in constant meshed engagement with the pinion gear, and a one-way clutch. The one-way clutch is adapted to selectively drivingly interconnect the drive plate and the crankshaft. The clutch includes an inner race adapted to be fixed for rotation with the crankshaft, an outer race coupled for rotation with the drive plate, and a plurality of roller elements positioned radially therebetween. A fastener couples the drive plate to the outer race and compresses an elastomeric damper between the drive plate and the outer race.
Abstract:
A hybrid vehicle starting system includes a pinion gear driven by a starter motor, and a drive plate having a set of teeth in constant meshed engagement with the pinion gear. A one-way clutch drivingly interconnects the drive plate and an engine crankshaft and includes an inner race fixed for rotation with the crankshaft, an outer race fixed for rotation with the drive plate, and a plurality of rollers positioned radially therebetween. A cage positions the rollers in circumferentially spaced apart alignment with outer cam surfaces. A split ring is positioned within grooves on each of the inner race and the outer race. The split ring is fitted within one of the grooves at a first clearance and fitted within the other of the grooves at a predetermined second clearance at least ten times the first clearance to isolate the outer race from vibrations of the inner race.
Abstract:
A wet clutch includes a rotatable hub and a rotatable drum having an aperture extending therethrough. A plurality of outer clutch plates are fixed for rotation with the drum. A plurality of inner clutch plates are fixed for rotation with the hub and interleaved with the outer clutch plates. A piston is moveable to apply a force to the inner and outer clutch plates to transfer torque between the hub and the drum. A cover is moveable relative to the drum between first and second positions. The cover selectively restricts a flow of fluid through the aperture in the drum when in the first position.
Abstract:
A clutch assembly includes an inner race, an outer race and a plurality of roller elements positioned radially therebetween. The clutch assembly also includes a cage assembly, a seal and a retaining ring. The cage assembly includes a skeleton coupled to a spring ring having a plurality of radially extending guides arranged to circumferentially space apart each roller element in alignment with cam surfaces formed on the outer race. The guides are resiliently deformable to allow concurrent engagement of each roller element with both the inner and outer races. The seal engages an inner surface of the outer race and an outer surface of the inner race, and is positioned axially outboard of the roller elements. The retaining ring is positioned within ring grooves formed on each of the inner and outer races to restrict movement of the cage.
Abstract:
A wet clutch includes a rotatable hub and a rotatable drum having an aperture extending therethrough. A plurality of outer clutch plates are fixed for rotation with the drum. A plurality of inner clutch plates are fixed for rotation with the hub and interleaved with the outer clutch plates. A piston is moveable to apply a force to the inner and outer clutch plates to transfer torque between the hub and the drum. A cover is moveable relative to the drum between first and second positions. The cover selectively restricts a flow of fluid through the aperture in the drum when in the first position.
Abstract:
A one-way clutch assembly includes an inner race adapted to be fixed for rotation with a first rotatable member, an outer race having circumferentially spaced apart cam surfaces and being adapted to be fixed for rotation with a second rotatable member as well as a plurality of roller elements positioned therebetween. A plurality of circumferentially extending springs cooperate with the cage to align each roller element with the cam surfaces. The springs and cage urge the roller elements away from the inner race. A retaining mechanism captures lubricant in contact with the roller elements.