摘要:
Disclosed is an electrode for semiconductor devices capable of suppressing the generation of hillocks and reducing the resistivity, which is suitable for an active matrixed liquid crystal display and the like in which a thin film transistor is used; its fabrication method; and a sputtering target for forming the electrode film for semiconductor devices. The electrode for semiconductor devices is made of an Al alloy containing the one or more alloying elements selected from Fe, Co, Ni, Ru, Rh and Ir, in a total amount from 0.1 to 10 At %, or one or more alloying elements selected from rare earth elements, in a total amount from 0.05 to 15 at %. The method of fabricating an electrode for semiconductor devices, includes the steps of: depositing an Al alloy film, in which the elements mentioned above are dissolved in an Al matrix, on a substrate; and precipitating part of all of the elements dissolved in the Al matrix as intermetallic compounds by annealing the Al alloy film at an annealing temperature ranging from 150° to 400° C.; whereby an electrode for semiconductor devices which is made of an Al alloy film with an electrical resistivity lower than 20 μΩcm is obtained. The target is made of an Al alloy containing the above elements.REEXAMINATION RESULTSThe questions raised in reexamination proceedings Nos. 90/007,822 and 90/007,883, filed Nov. 28, 2005 and Nov. 28, 2005 respectively, have been considered, and the results thereof are reflected in this reissue patent which constitutes the reexamination certificate required by 35 U.S.C. 307 as provided in 37 CFR 1.570(e) for ex parte reexaminations, and/or the reexamination certificate required by 35 U.S.C. 316 as provided in 37 CFR 1.997(e) for inter partes reexaminations.
摘要:
Disclosed is an electrode for semiconductor devices capable of suppressing the generation of hillocks and reducing the resistivity, which is suitable for an active matrixed liquid crystal display and the like in which a thin film transistor is used; its fabrication method; and a sputtering target for forming the electrode film for semiconductor devices. The electrode for semiconductor devices is made of an Al alloy containing the one or more alloying elements selected from Fe, Co, Ni, Ru, Rh and Ir, in a total amount from 0.1 to 10 At %, or one or more alloying elements selected from rare earth elements, in a total amount from 0.05 to 15 at %. The method of fabricating an electrode for semiconductor devices, includes the steps of: depositing an Al alloy film, in which the elements mentioned above are dissolved in an Al matrix, on a substrate; and precipitating part of all of the elements dissolved in the Al matrix as intermetallic compounds by annealing the Al alloy film at an annealing temperature ranging from 150 to 400.degree. C.; whereby an electrode for semiconductor devices which is made of an Al alloy film with an electrical resistivity lower than 20 .mu..OMEGA.cm is obtained. The target is made of an Al alloy containing the above elements.
摘要:
Disclosed is an electrode for semiconductor devices capable of suppressing the generation of hillocks and reducing the resistivity, which is suitable for an active matrixed liquid crystal display and the like in which a thin film transistor is used; its fabrication method; and a sputtering target for forming the electrode film for semiconductor devices. The electrode for semiconductor devices is made of an Al alloy containing the one or more alloying elements selected from Fe, Co, Ni, Ru, Rh and Ir, in a total amount from 0.1 to 10 At %, or one or more alloying elements selected from rare earth elements, in a total amount from 0.05 to 15 at %. The method of fabricating an electrode for semiconductor devices, includes the steps of: depositing an Al alloy film, in which the elements mentioned above are dissolved in an Al matrix, on a substrate; and precipitating part of all of the elements dissolved in the Al matrix as intermetallic compounds by annealing the Al alloy film at an annealing temperature ranging from 150 to 400° C.; whereby an electrode for semiconductor devices which is made of an Al alloy film with an electrical resistivity lower than 20 μΩcm is obtained. The target is made of an Al alloy containing the above elements.
摘要:
Disclosed is an electrode for semiconductor devices capable of suppressing the generation of hillocks and reducing the resistivity, which is suitable for an active matrixed liquid crystal display and the like in which a thin film transistor is used; its fabrication method; and a sputtering target for forming the electrode film for semiconductor devices. The electrode for semiconductor devices is made of an Al alloy containing the one or more alloying elements selected from Fe, Co, Ni, Ru, Rh and Ir, in a total amount from 0.1 to 10 At %, or one or more alloying elements selected from rare earth elements, in a total amount from 0.05 to 15 at %. The method of fabricating an electrode for semiconductor devices, includes the steps of: depositing an Al alloy film, in which the elements mentioned above are dissolved in an Al matrix, on a substrate; and precipitating part of all of the elements dissolved in the Al matrix as intermetallic compounds by annealing the Al alloy film at an annealing temperature ranging from 150.degree. to 400.degree. C.; whereby an electrode for semiconductor devices which is made of an Al alloy film with an electrical resistivity lower than 20 .mu..OMEGA.cm is obtained. The target is made of an Al alloy containing the above elements.
摘要:
An active matrix type liquid crystal display, in which the reliability is enhanced by preventing the short-circuit and insulation breakdown of a gate insulating portion and the delay time of a gate bus line is shortened by reducing the resistivity of an interconnect film. The liquid crystal display of this type is manufactured by the steps of forming an interconnect/electrode film on a substrate by physical deposition; patterning the interconnect/electrode film; and anodic-oxidizing part or all of the interconnect/electrode film. In this method, the interconnect/electrode film is formed of an Al alloy containing at least one kind selected from a group consisting Fe, Co and rare earth elements in an amount of 0.1 to 10 at %; and the thickness of the anodic oxidation film is specified to be in the range of 200 Å or more.
摘要:
There is provided an Al-based alloy sputtering target, which can provide an enhanced deposition rate (or sputtering rate) when the sputtering target is used, and which can preferably prevent the occurrence of splashes. The Al-based alloy sputtering target of the present invention includes Ta and may preferably include an Al—Ta-based intermetallic compound containing Al and Ta, which compound has a mean particle diameter of from 0.005 μm to 1.0 μm and a mean interparticle distance of from 0.01 μm to 10.0 μm.
摘要:
A crash energy absorption member is provided which has excellent crash energy absorbing properties with the ability of repeated buckling in a stable manner, a high average load at the time of collapse, and the maximum load which is within a range which does not break other members.It is a crash energy absorption member which preferably has a transverse cross-sectional shape of an octagon and which is intended for absorbing impact energy by buckling in the lengthwise direction into a shape of bellows when it receives an impact load. With respect to at least one side forming the transverse cross-sectional shape, when the angle formed by the two sides which adjoin the opposing ends of the one side is α, the relationship between the length L1 of the one side and the distance L2 between the two furthest ends of the two sides interposing the one side satisfies the following equation: 0
摘要:
The present invention relates to an Ag alloy film. Particularly, it is preferably used as a reflective film or semi-transmissive reflective film for an optical information recording medium having high thermal conductivity/high reflectance/high durability in the field of optical information recording media, an electromagnetic-shielding film excellent in Ag aggregation resistance, and an optical reflective film on the back of a reflection type liquid crystal display device, or the like. The Ag alloy film of the present invention comprises an Ag base alloy containing Bi and/or Sb in a total amount of to 10% (in terms of at %). Further, the present invention relates to a sputtering target used for the deposition of such an Ag alloy film.
摘要:
The present invention relates to an Ag alloy film. Particularly, it is preferably used as a reflective film or semi-transmissive reflective film for an optical information recording medium having high thermal conductivity/high reflectance/high durability in the field of optical information recording media, an electromagnetic-shielding film excellent in Ag aggregation resistance, and an optical reflective film on the back of a reflection type liquid crystal display device, or the like. The Ag alloy film of the present invention comprises an Ag base alloy containing Bi and/or Sb in a total amount of 0.005 to 10% (in terms of at %). Further, the present invention relates to a sputtering target used for the deposition of such an Ag alloy film.
摘要:
Each of a semi-reflective film or reflective film for an optical information recording medium, and a Ag based alloy sputtering target includes a Ag based alloy containing 0.01 to 10 atomic percent of Li. The Ag based alloy exhibits high cohesion resistance, high light resistance, high heat resistance, high reflectivity, high transmissivity, low absorptivity, and high thermal conductivity of the level which had not been realized by the pure Ag or by the conventional Ag alloys. The resulting semi-reflective film and reflective film for an optical information recording medium containing the Ag based alloy exhibit excellent writing/reading properties and long term reliability. The sputtering target for an optical information recording medium is used in depositing the semi-reflective film and the reflective film. Using the semi-reflective film and/or the reflective film, an optical information recording medium is manufactured.