摘要:
The charged particle beam device has a problem that a symmetry of equipotential distribution is disturbed near the outer edge of a specimen, an object being evaluated, causing a charged particle beam to deflect there. An electrode plate installed inside the specimen holding mechanism of electrostatic attraction type is formed of an inner and outer electrode plates arranged concentrically. The outer electrode plate is formed to have an outer diameter larger than that of the specimen. The dimensions of the electrode plates are determined so that an overlapping area of the outer electrode plate and the specimen is substantially equal to an area of the inner electrode plate. The inner electrode plate is impressed with a voltage of a positive polarity with respect to a reference voltage and of an arbitrary magnitude, and the outer electrode is impressed with a voltage of a negative polarity and of an arbitrary magnitude.
摘要:
It is an object of the present invention to provide an electron microscope for properly applying a retarding voltage to a sample which is brought into electrical conduction.In order to accomplish the above-described object, the following electron microscope is proposed: The electron microscope including a negative-voltage applying power-supply for applying the negative voltage to the sample, and thereby forming a decelerating electric field to be exerted onto the electron beam, an electrostatic-chuck mechanism for providing a potential difference among a plurality of its internal electrodes, and thereby generating an adsorption force to be exerted onto the sample, and a contact terminal which is so configured as to come into contact with the sample when the sample is deployed on a sample-supporting stage, the electrostatic-chuck mechanism causes the potential difference to occur among the internal electrodes in the state where the contact terminal comes into contact with the sample, the negative-voltage applying power-supply being operated to apply the negative voltage to the contact terminal after the potential difference has been caused to occur.
摘要:
There is provided a technique that is capable of attracting a sample without making the voltage applied to an electrostatic chuck unnecessarily large. Attraction experiments with respect to the electrostatic chuck are performed using a testing sample whose degree of warp and pattern of warp are known, and a critical application voltage at which the attraction state changes from “bad” to “good” is found. When measuring an inspection target sample, the flatness of the inspection target sample is measured, and the degree of warp and pattern of warp of the inspection target sample are detected. Based on the degree of warp and pattern of warp of the inspection target sample and on the known critical application voltage, the application voltage for the electrostatic chuck is set.
摘要:
In the case of inspecting samples having different sizes by means of a semiconductor inspecting apparatus, a primary electron beam bends since distribution is disturbed on an equipotential surface at the vicinity of the sample at the time of inspecting vicinities of the sample, and what is called a positional shift is generated. A potential correcting electrode is arranged outside the sample and at a position lower than the sample lower surface, and a potential lower than that of the sample is applied. Furthermore, a voltage to be applied to the potential correcting electrode is controlled corresponding to a distance between the inspecting position and a sample outer end, sample thickness and irradiation conditions of the primary electron beam.
摘要:
It is an object of the present invention to provide an electron microscope for properly applying a retarding voltage to a sample which is brought into electrical conduction.In order to accomplish the above-described object, the following electron microscope is proposed: The electron microscope including a negative-voltage applying power-supply for applying the negative voltage to the sample, and thereby forming a decelerating electric field to be exerted onto the electron beam, an electrostatic-chuck mechanism for providing a potential difference among a plurality of its internal electrodes, and thereby generating an adsorption force to be exerted onto the sample, and a contact terminal which is so configured as to come into contact with the sample when the sample is deployed on a sample-supporting stage, the electrostatic-chuck mechanism causes the potential difference to occur among the internal electrodes in the state where the contact terminal comes into contact with the sample, the negative-voltage applying power-supply being operated to apply the negative voltage to the contact terminal after the potential difference has been caused to occur.
摘要:
There is provided a technique that is capable of attracting a sample without making the voltage applied to an electrostatic chuck unnecessarily large. Attraction experiments with respect to the electrostatic chuck are performed using a testing sample whose degree of warp and pattern of warp are known, and a critical application voltage at which the attraction state changes from “bad” to “good” is found. When measuring an inspection target sample, the flatness of the inspection target sample is measured, and the degree of warp and pattern of warp of the inspection target sample are detected. Based on the degree of warp and pattern of warp of the inspection target sample and on the known critical application voltage, the application voltage for the electrostatic chuck is set.
摘要:
The charged particle beam device has a problem that a symmetry of equipotential distribution is disturbed near the outer edge of a specimen, an object being evaluated, causing a charged particle beam to deflect there. An electrode plate installed inside the specimen holding mechanism of electrostatic attraction type is formed of an inner and outer electrode plates arranged concentrically. The outer electrode plate is formed to have an outer diameter larger than that of the specimen. The dimensions of the electrode plates are determined so that an overlapping area of the outer electrode plate and the specimen is substantially equal to an area of the inner electrode plate. The inner electrode plate is impressed with a voltage of a positive polarity with respect to a reference voltage and of an arbitrary magnitude, and the outer electrode is impressed with a voltage of a negative polarity and of an arbitrary magnitude.
摘要:
In the case of inspecting samples having different sizes by means of a semiconductor inspecting apparatus, a primary electron beam bends since distribution is disturbed on an equipotential surface at the vicinity of the sample at the time of inspecting vicinities of the sample, and what is called a positional shift is generated. A potential correcting electrode is arranged outside the sample and at a position lower than the sample lower surface, and a potential lower than that of the sample is applied. Furthermore, a voltage to be applied to the potential correcting electrode is controlled corresponding to a distance between the inspecting position and a sample outer end, sample thickness and irradiation conditions of the primary electron beam.
摘要:
In the case of inspecting samples having different sizes by means of a semiconductor inspecting apparatus, a primary electron beam bends since distribution is disturbed on an equipotential surface at the vicinity of the sample at the time of inspecting vicinities of the sample, and what is called a positional shift is generated. A potential correcting electrode is arranged outside the sample and at a position lower than the sample lower surface, and a potential lower than that of the sample is applied. Furthermore, a voltage to be applied to the potential correcting electrode is controlled corresponding to a distance between the inspecting position and a sample outer end, sample thickness and irradiation conditions of the primary electron beam.
摘要:
A charged particle radiation device includes a sample chamber in which a sample stage adapted to mount a sample is installed, a charged particle radiation irradiation section adapted to irradiate the sample with a charged particle radiation to observe and fabricate the sample, sidewalls installed on a periphery of the sample chamber and the charged particle radiation irradiation section, a ceiling board installed on a plane located in an upper part of the sidewalls, and a sound absorbing structure section disposed below the ceiling board, and including a plurality of hole sections and a hollow section communicated with the hole sections. The sound absorbing structure section has an absorption band including a frequency band of a standing wave generated in a space surrounded by the sidewalls and the ceiling board. Further, a soundproof cover may include the sidewalls, ceiling board and sound absorbing structure.