摘要:
The present invention relates to a method for quantifying protein tyrosine phosphatase (referred as PTP hereinafter) in biosamples, precisely a diagnostic method for disease by quantifying PTP using mass spectrometry and profiling of comparative PTP levels. By quantifying PTP in biosamples and profiling thereof according to the method of the present invention, disease can be diagnosed and diverse disease conditions and health conditions can be confirmed via profiling.
摘要:
The present invention relates to a method for quantifying protein tyrosine phosphatase (referred as PTP hereinafter) in biosamples, precisely a diagnostic method for disease by quantifying PTP using mass spectrometry and profiling of comparative PTP levels. By quantifying PTP in biosamples and profiling thereof according to the method of the present invention, disease can be diagnosed and diverse disease conditions and health conditions can be confirmed via profiling.
摘要:
A light emitting device and a method of manufacturing the same are disclosed. The light emitting device includes a buffer layer formed on a substrate, a nitride semiconductor layer including a first semiconductor layer, an active layer, and a second semiconductor layer, which are sequentially stacked on the buffer layer, a portion of the first semiconductor layer being exposed to the outside by performing mesa etching from the second semiconductor layer to the portion of the first semiconductor layer, and at least one nanocone formed on the second semiconductor layer.
摘要:
A light emitting device and a method of manufacturing the same are disclosed. The light emitting device includes a buffer layer formed on a substrate, a nitride semiconductor layer including a first semiconductor layer, an active layer, and a second semiconductor layer, which are sequentially stacked on the buffer layer, a portion of the first semiconductor layer being exposed to the outside by performing mesa etching from the second semiconductor layer to the portion of the first semiconductor layer, and at least one nanocone formed on the second semiconductor layer.
摘要:
A light emitting device and a method of manufacturing the same are disclosed. The light emitting device includes a buffer layer formed on a substrate, a nitride semiconductor layer including a first semiconductor layer, an active layer, and a second semiconductor layer, which are sequentially stacked on the buffer layer, a portion of the first semiconductor layer being exposed to the outside by performing mesa etching from the second semiconductor layer to the portion of the first semiconductor layer, and at least one nanocone formed on the second semiconductor layer.
摘要:
A light emitting device and a method of manufacturing the same are disclosed. The light emitting device includes a buffer layer formed on a substrate, a nitride semiconductor layer including a first semiconductor layer, an active layer, and a second semiconductor layer, which are sequentially stacked on the buffer layer, a portion of the first semiconductor layer being exposed to the outside by performing mesa etching from the second semiconductor layer to the portion of the first semiconductor layer, and at least one nanocone formed on the second semiconductor layer.
摘要:
A light emitting device and a method of manufacturing the same are disclosed. The light emitting device includes a buffer layer formed on a substrate, a nitride semiconductor layer including a first semiconductor layer, an active layer, and a second semiconductor layer, which are sequentially stacked on the buffer layer, a portion of the first semiconductor layer being exposed to the outside by performing mesa etching from the second semiconductor layer to the portion of the first semiconductor layer, and at least one nanocone formed on the second semiconductor layer.
摘要:
A light emitting device and a method of manufacturing the same are disclosed. The light emitting device includes a buffer layer formed on a substrate, a nitride semiconductor layer including a first semiconductor layer, an active layer, and a second semiconductor layer, which are sequentially stacked on the buffer layer, a portion of the first semiconductor layer being exposed to the outside by performing mesa etching from the second semiconductor layer to the portion of the first semiconductor layer, and at least one nanocone formed on the second semiconductor layer.