摘要:
An electronic device comprises a first chassis, a second chassis, and at least one flexible circuit extending therebetween. The first chassis is oriented along a first axis and comprises at least one first microprocessor. The second chassis is oriented along a second axis and comprises at least one power generating component. The flexible circuit comprises a first end and a second end, wherein the first end is connectable to the first chassis and the second end is connectable to the second chassis. The first chassis is movable relative to the second chassis between a position wherein the first axis is substantially perpendicular to the second axis and a position wherein the first axis is substantially parallel to the second axis.
摘要:
An electronic device includes a first chassis, a second chassis, and at least one flexible circuit extending therebetween. The first chassis is oriented along a first axis and comprises at least one first microprocessor. The second chassis is oriented along a second axis and comprises at least one power generating component. The flexible circuit comprises a first end and a second end, wherein the first end is connectable to the first chassis and the second end is connectable to the second chassis. The first chassis is movable relative to the second chassis between a position wherein the first axis is substantially perpendicular to the second axis and a position wherein the first axis is substantially parallel to the second axis.
摘要:
Computational enclosures may be designed to distribute power from power supplies to load units (e.g., processors, storage devices, or network routers). The architecture may affect the efficiency, cost, modularity, accessibility, and space utilization of the components within the enclosure. Presented herein are power distribution architectures involving a distribution board oriented along a first (e.g., vertical) axis within the enclosure, comprising a power interconnect configured to distribute power among a set of load boards oriented along a second (e.g., lateral) axis and respectively connecting with a set of load units oriented along a third (e.g., sagittal) axis, and a set of power supplies also oriented along the third axis. This orientation may compactly and proximately position the loads near the power supplies in the distribution system, and result in a comparatively low local current that enables the use of printed circuit boards for the distribution board and load boards.
摘要:
A method described herein includes an act of receiving data that is indicative of predicted weather conditions for a particular geographic region, wherein the particular geographic region has an energy generation system therein, and wherein the energy generation system utilizes at least one renewable energy resource to generate electrical power. The method also includes the act of scheduling a computational workload for at least one computer in a data center based at least in part upon the data that is indicative of the predicted weather conditions for the particular geographic region.
摘要:
Embodiments include apparatus, methods, and systems having a multi-chip module with a power system. An exemplary electronic module includes a printed circuit board (PCB) having a memory and plural processors. A power system couples to and is disposed vertically above the PCB. A thermal dissipation device is disposed between the power system and the PCB for dissipating heat, via a direct heat exchange, from both the power system and the plural processors.
摘要:
Embodiments include apparatus, methods, and systems having a multi-chip module with a power system. An exemplary electronic module includes a printed circuit board (PCB) having a memory and plural processors. A power system couples to and is disposed vertically above the PCB. A thermal dissipation device is disposed between the power system and the PCB for dissipating heat, via a direct heat exchange, from both the power system and the plural processors.
摘要:
Embodiments include apparatus, methods, and systems of a processor module for a system board. In one embodiment, an electronic module, having first and second portions, is removably connectable to the system board. The first portion connects to the system board and includes a thermal dissipation device and a printed circuit board (PCB) with a processor connected to a first side of the PCB. The thermal dissipation device dissipates heat, via a heat exchange, from the processor. The second portion is disposed in a space created between the first portion and the system board. The second portion has a power system board for providing power to the processor. The power system board extends adjacent and parallel to a second side of the PCB.
摘要:
Embodiments include apparatus, methods, and systems having a multi-chip module with stacked redundant power. An exemplary apparatus has a module having plural processors. A first power system is coupled, in a vertically stacked configuration, to the module for providing power to the module. A second power system provides power to the module and is coupled, in a vertically stacked configuration, to the first power system. Each power system serves as a duplicate for preventing failure of the module upon failure of one of the power systems. A thermal dissipation device is disposed between both the first and second power systems and the first power system and module such that the thermal dissipation device dissipates heat, via heat exchange, away from the processors, the first power system, and the second power system.
摘要:
A framework that enables a local computing cloud infrastructure for rural (and third world) populations with the ability to connect into the global cloud. The framework include is a low cost architecture of long distance, wireless based, renewable energy powered, and small datacenter (DC) (referred to as a pico-DC) nodes that can fully operate off-grid, both power-wise and Internet connection-wise at a very low cost. Additionally, the framework includes power management and storage techniques that effectively enable low power and efficient power use. Thus, systems are self-sufficient, low maintenance and weather proof with no need for power or data connections.
摘要:
Computational enclosures may be designed to distribute power from power supplies to load units (e.g., processors, storage devices, or network routers). The architecture may affect the efficiency, cost, modularity, accessibility, and space utilization of the components within the enclosure. Presented herein are power distribution architectures involving a distribution board oriented along a first (e.g., vertical) axis within the enclosure, comprising a power interconnect configured to distribute power among a set of load boards oriented along a second (e.g., lateral) axis and respectively connecting with a set of load units oriented along a third (e.g., sagittal) axis, and a set of power supplies also oriented along the third axis. This orientation may compactly and proximately position the loads near the power supplies in the distribution system, and result in a comparatively low local current that enables the use of printed circuit boards for the distribution board and load boards.