摘要:
A method for implanting copper conductive layers in channel or via openings with alloying elements, such as magnesium, boron, tin, and zirconium. The implantation is performed after conductive layer chemical-mechanical-polishing (CMP) using a surface barrier layer as an implant barrier. With the surface barrier layer being removed by barrier layer CMP, this allows directed, heavy implantation of the conductive layer with the alloying elements.
摘要:
A semiconductor barrier layer and manufacturing method therefor for copper interconnects which is a tantalum-titanium, tantalum-titanium nitride, tantalum-titanium sandwich. The tantalum in the tantalum-titanium alloy bonds strongly with the semiconductor dielectric, the tantalum-titanium nitride acts as the barrier to prevent diffusion of copper, and the titanium bonds strongly with the copper.
摘要:
A semiconductor device is provided with a tantalum layer to line the channels and vias of a semiconductor, a tungsten nitride layer at a low temperature on the tantalum layer, and a copper conductor layer on the tungsten nitride layer. The tungsten nitride acts as a highly efficient copper barrier material with high resistivity while the tantalum layer acts as a conductive barrier material to reduce the overall resistance of the barrier layer.
摘要:
A method is provided for manufacturing a semiconductor device by: depositing a tantalum layer to line the channels and vias of a semiconductor; depositing a tungsten nitride layer at a low temperature on the tantalum layer; and depositing a copper conductor layer on the tungsten nitride layer. The tungsten nitride acts as a highly efficient copper barrier material with high resistivity while the tantalum layer acts as a conductive barrier material to reduce the overall resistance of the barrier layer.
摘要:
An integrated circuit and a method for manufacturing therefor is provided in which a partial dual damascene deposition is performed to place a barrier, seed, and conductive layer in most of a via between two interconnect channels and then capping the via with a further barrier, seed, conductive layer to prevent electromigration between an interconnect channel and the via.
摘要:
An integrated circuit and a method for manufacturing therefor is provided in which a partial dual damascene deposition is performed to place a barrier, seed, and conductive layer in most of a via between two interconnect channels and then capping the via with a further barrier, seed, conductive layer to prevent electromigration between an interconnect channel and the via.
摘要:
A thin filmed fully-depleted silicon-on-insulator (SOI) metal oxide semiconductor field effect transistor (MOSFET) utilizes a local insulation structure. The local insulative structure includes a buried silicon dioxide region under the channel region. The MOSFET body thickness is very small and yet silicon available outside of the channel region and buried silicon dioxide region is available for sufficient depths of silicide in the source and drain regions. The buried silicon dioxide region can be formed by a trench isolation technique or a LOCOS technique.
摘要:
A method for manufacturing an integrated circuit using damascene processes is provided in which planar surfaces of contacting conductive metal channels and vias are subjected to chemical-mechanical polishing under a pressure which avoids cold working and to two steps of chemical-mechanical polishing in which the first step is performed using a slurry with a first sized abrasive to expose a first dielectric layer in which the conductive metal channel is embedded and to provide a planar polished surface of the conductive material, and a second step is performed using a second slurry with a second sized abrasive larger than said first sized abrasive to provide a planar rough-polished surface of the conductive material. The second polishing also performed at a pressure which avoids cold working, which causes a highly polycrystalline structure and a high dislocation density, in the conductive material at its planar polished surface.
摘要:
A deep submicron MOS device having a self-aligned silicide gate structure and a method for forming the same is provided so as to overcome the problems of poly-Si depletion and boron penetration. A first Nickel silicide layer is formed between a gate oxide and a polycrystalline silicon gate electrode. Further, second Nickel silicide layers are formed over highly-doped source/drain regions. In this fashion, the reliability of the MOS device will be enhanced.
摘要:
A test structure used to measure metal bottom coverage in semiconductor integrated circuits. The metal is deposited in etched trenches, vias and/or contacts created during the integrated circuit manufacturing process. A predetermined pattern of probe contacts are disposed about the semiconductor wafer. Metal deposited in the etched areas is heated to partially react with the underlying and surrounding undoped material. The remaining unreacted metal layer is then removed, and an electrical current is applied to the probe contacts. The resistance of the reacted portion of metal and undoped material is measured to determine metal bottom coverage. Some undoped material may also be removed to measure metal sidewall coverage. The predetermined pattern of probe contacts is preferably arranged in a Kelvin or Vander Paaw structure.