摘要:
A conductive mesoporous carbon composite comprising conductive carbon nanoparticles contained within a mesoporous carbon matrix, wherein the conductive mesoporous carbon composite possesses at least a portion of mesopores having a pore size of at least 10 nm and up to 50 nm, and wherein the mesopores are either within the mesoporous carbon matrix, or are spacings delineated by surfaces of said conductive carbon nanoparticles when said conductive carbon nanoparticles are fused with each other, or both. Methods for producing the above-described composite, devices incorporating them (e.g., lithium batteries), and methods of using them, are also described.
摘要:
A conductive mesoporous carbon composite comprising conductive carbon nanoparticles contained within a mesoporous carbon matrix, wherein the conductive mesoporous carbon composite possesses at least a portion of mesopores having a pore size of at least 10 nm and up to 50 nm, and wherein the mesopores are either within the mesoporous carbon matrix, or are spacings delineated by surfaces of said conductive carbon nanoparticles when said conductive carbon nanoparticles are fused with each other, or both. Methods for producing the above-described composite, devices incorporating them (e.g., lithium batteries), and methods of using them, are also described.
摘要:
The invention is directed to a method for fabricating a mesoporous carbon material, the method comprising subjecting a precursor composition to a curing step followed by a carbonization step, the precursor composition comprising: (i) a templating component comprised of a block copolymer, (ii) a phenolic compound or material, (iii) a crosslinkable aldehyde component, and (iv) at least 0.5 M concentration of a strong acid having a pKa of or less than −2, wherein said carbonization step comprises heating the precursor composition at a carbonizing temperature for sufficient time to convert the precursor composition to a mesoporous carbon material. The invention is also directed to a mesoporous carbon material having an improved thermal stability, preferably produced according to the above method.
摘要:
The invention is directed to a method for fabricating a mesoporous carbon material, the method comprising subjecting a precursor composition to a curing step followed by a carbonization step, the precursor composition comprising: (i) a templating component comprised of a block copolymer, (ii) a phenolic compound or material, (iii) a crosslinkable aldehyde component, and (iv) at least 0.5 M concentration of a strong acid having a pKa of or less than −2, wherein said carbonization step comprises heating the precursor composition at a carbonizing temperature for sufficient time to convert the precursor composition to a mesoporous carbon material. The invention is also directed to a mesoporous carbon material having an improved thermal stability, preferably produced according to the above method.
摘要:
The invention is directed to a method for fabricating a mesoporous carbon material, the method comprising subjecting a precursor composition to a curing step followed by a carbonization step, the precursor composition comprising: (i) a templating component comprised of a block copolymer, (ii) a phenolic compound or material, (iii) a crosslinkable aldehyde component, and (iv) at least 0.5 M concentration of a strong acid having a pKa of or less than −2, wherein said carbonization step comprises heating the precursor composition at a carbonizing temperature for sufficient time to convert the precursor composition to a mesoporous carbon material. The invention is also directed to a mesoporous carbon material having an improved thermal stability, preferably produced according to the above method.
摘要:
The invention is directed to a method for fabricating a mesoporous carbon material, the method comprising subjecting a precursor composition to a curing step followed by a carbonization step, the precursor composition comprising: (i) a templating component comprised of a block copolymer, (ii) a phenolic compound or material, (iii) a crosslinkable aldehyde component, and (iv) at least 0.5 M concentration of a strong acid having a pKa of or less than −2, wherein said carbonization step comprises heating the precursor composition at a carbonizing temperature for sufficient time to convert the precursor composition to a mesoporous carbon material. The invention is also directed to a mesoporous carbon material having an improved thermal stability, preferably produced according to the above method.
摘要:
This invention provides a vehicle powered by a surface-mediated cell (SMC)-based power source, comprising a vehicle frame, at least a wheel supporting the frame or a propeller connected to the frame, a drive unit connected to the wheel or propeller, and a power source electrically connected to the drive unit, wherein the power source contains at least a surface-mediated cell. The vehicle can be a micro-EV (using the SMC for the stop-start function), HEV, plug-in HEV, all-electric vehicle, power-assisted bicycle, scooter, motorcycle, tricycle, automobile, wheelchair, fork lift, golf cart, specialty vehicle, bus, truck, train, rapid-transit vehicle, boat, or air vehicle. The ultra-high power density enables the SMC to provide pulsed power or increased current demands when the vehicle is accelerating or hill-climbing. The SMC also enables the power source to recuperate the braking energy when the vehicle decelerates, brakes, or simply moves down-hill.
摘要:
This invention provides a vehicle powered by a surface-mediated cell (SMC)-based power source, comprising a vehicle frame, at least a wheel supporting the frame or a propeller connected to the frame, a drive unit connected to the wheel or propeller, and a power source electrically connected to the drive unit, wherein the power source contains at least a surface-mediated cell. The vehicle can be a micro-EV (using the SMC for the stop-start function), HEV, plug-in HEV, all-electric vehicle, power-assisted bicycle, scooter, motorcycle, tricycle, automobile, wheelchair, fork lift, golf cart, specialty vehicle, bus, truck, train, rapid-transit vehicle, boat, or air vehicle. The ultra-high power density enables the SMC to provide pulsed power or increased current demands when the vehicle is accelerating or hill-climbing. The SMC also enables the power source to recuperate the braking energy when the vehicle decelerates, brakes, or simply moves down-hill.
摘要:
The present invention provides a multi-component hybrid electrode for use in an electrochemical super-hybrid energy storage device. The hybrid electrode contains at least a current collector, at least an intercalation electrode active material storing lithium inside interior or bulk thereof, and at least an intercalation-free electrode active material having a specific surface area no less than 100 m2/g and storing lithium on a surface thereof, wherein the intercalation electrode active material and the intercalation-free electrode active material are in electronic contact with the current collector. The resulting super-hybrid cell exhibits exceptional high power and high energy density, and long-term cycling stability that cannot be achieved with conventional supercapacitors, lithium-ion capacitors, lithium-ion batteries, and lithium metal secondary batteries.
摘要:
A surface-mediated cell (SMC) comprising: (a) a cathode comprising a carbon-based cathode active material having a surface area to capture or store lithium thereon; (b) an anode comprising an anode current collector alone, or combined anode current collector and anode active material; (c) a porous separator disposed between the anode and the cathode; (d) a lithium-containing electrolyte, wherein the anode and/or cathode active material has a specific surface area no less than 100 m2/g in direct physical contact with the electrolyte to receive lithium ions therefrom or to provide lithium ions thereto; and (e) a lithium source disposed in at least one of the two electrodes when the cell is made, and the cell has an open-circuit voltage (OCV) of at least 0.8 volts; wherein the cell operates between a lower voltage limit lower than the OCV and an upper limit of between 3.8 and 4.5 volts.