摘要:
In the present disclosure, one TFT substrate and a liquid crystal panel are disclosed. The TFT substrate includes a plurality of pixel cells, and each of the pixel cells includes three sub-pixel cells. Within one pixel cell, at least one sub-pixel includes single pixel area. Each of the other pixel cells includes two isolated pixel areas, and brightness of the at least two isolated pixel areas being different. In view of the above, the performance of the liquid crystal panel is enhanced when the viewing angle is large. In addition, the transmission rate of the liquid crystal panel may be maintained to be higher, which saves the power consumption of the backlight module so as to save the energy.
摘要:
The present disclosure relates to a panel detection circuit and a display panel. The panel detection circuit comprises a source detection unit comprising a source testing line and several source switching units, a gate detection unit comprising a gate control line, a gate testing line and several gate switching unit, wherein the source switching unit and the gate switching unit each comprise at least two switching elements to keep the source switching unit and the gate switching unit disenabled after the panel detection is completed.
摘要:
A mask and a method of manufacturing photoresist spacers with the mask are provided. The method includes: using the mask to expose and develop to a coated negative resist material, so as to form at least one sub photoresist spacer with at least one predetermined height, wherein an area of the shading portion of the first penetration region is determined according to the predetermined height of the sub photoresist spacer. Using the mask and the method of manufacturing photoresist spacers with the mask, different heights of the sub photoresist spacers can be obtained.
摘要:
A thin film transistor array substrate includes a pixel electrode layout area, a data electrode layout area, a transparent pixel electrode layer formed in the pixel electrode layout area, a first metal layer, a first dielectric layer, an amorphous silicon layer, a second metal layer, a second dielectric layer formed in the pixel electrode layout area and the data electrode layout area. The first dielectric layer covers the first metal layer. The amorphous silicon layer, the second metal layer and the second dielectric layer are sequentially formed on the first dielectric layer. The transparent pixel electrode layer is connected to the second metal layer through a via hole formed in the pixel electrode area of the second dielectric layer. Moreover, a method for manufacturing the thin film transistor array and a liquid crystal display including the thin film transistor array substrate also are provided.
摘要:
The present invention discloses a pixel unit and an array substrate. The pixel unit comprises: a plurality of pixel electrodes, including oblique pixel electrodes extending obliquely and transverse pixel electrodes located on edges of the oblique pixel electrodes and extending transversely, the plurality of pixel electrodes forming a display region having an opening region; and, a conductive unit which is located within the opening region and partially overlapped with projections of the oblique pixel electrodes, one corner of the conductive unit close to the oblique pixel units being an unfilled corner or a round corner. Accordingly, the impact of an electric field around the opening region on the electric field of the oblique pixel electrodes is reduced, and the impact on the liquid crystal orientation of the opening region is reduced; the dark fringe of pixels is improved; the aperture ratio of pixels is increased; and the quality of display is improved.
摘要:
A TFT-LCD array substrate is disclosed. The TFT-LCD array substrate includes a substrate and a thin film transistor (TFT) on the substrate, at least one pixel electrode, and a passivation layer. The passivation layer covers the gate insulation layer. The pixel electrode is arranged on the passivation layer. At least one portion between the gate insulation layer and the substrate is arranged with common electrode lines. At least one data line is arranged between the gate insulation layer and the passivation layer. The data line is arranged on the common electrode line. The common electrode line blocks the data line. In addition, a corresponding liquid crystal device is also disclosed. With the TFT-LCD array substrate and the liquid crystal device, not only the light leakage is avoided, but also the crosstalk resulting from the light leakage is also avoided.
摘要:
A thin film transistor (TFT) array substrate and a display panel are provided. The TFT array substrate includes multiple pixels arranged in an array. Each pixel includes first through third sub-pixels sequentially arranged along a first direction. The first through third sub-pixels are connected to a same scan line. The TFT array substrate further includes first through third data lines sequentially arranged along the first direction. The first through third data lines respectively are for driving the first through third sub-pixels. The first sub-pixel includes first and second areas, the second sub-pixel includes third and fourth areas, and the third sub-pixel includes fifth and sixth areas, arranged along a second direction. A voltage difference between a sub-pixel electrode in the sixth area and a common electrode is different from a voltage difference between a sub-pixel electrode in the fifth area and the common electrode.
摘要:
The invention provides a thin film transistor (TFT) array substrate and a display panel. The TFT array substrate is disposed with multiple pixels arranged in an array. Each pixel includes first through third sub-pixels sequentially arranged along a first direction. The first through third sub-pixels are connected to a same scan line. The TFT array substrate further is disposed with first through third data lines sequentially arranged along the first direction. The first through third data lines respectively are for driving the first through third sub-pixels. The first sub-pixel includes first and second areas, the second sub-pixel includes third and fourth areas, and the third sub-pixel includes fifth and sixth areas, arranged along a second direction. A voltage difference between a sub-pixel electrode in the sixth area and a common electrode is different from a voltage difference between a sub-pixel electrode in the fifth area and the common electrode.
摘要:
A panel inspection apparatus and a display panel are provided in the present invention. The panel inspection apparatus includes a data line detecting circuit and a scan line detecting circuit. The data line detecting circuit includes a data line detection switch, a control line of the data line detection switch, and a data line of the data line detection switch. The scan line detecting circuit includes a scan line detection switch, a control line of the scan line detection switch, and a data line of the scan line detection switch. The present invention further provides a display panel. The panel inspection apparatus does not need to be removed after detection of the panel in accordance with the panel inspection apparatus and the display panel of the present invention. Therefore, production costs of the display panel are reduced, and productivity of the display panel is improved.
摘要:
A fast testing switch device arranged on a TFT-LCD array substrate is disclosed. The fast testing switch device switches the testing signals for testing a display area of the TFT-LCD array substrate. The fast testing switch device includes at least a first switch TFT. The gate of the first switch TFT connects to one control chip and a testing block for receiving the switch control signals from the testing block or the turn-off control signals from the control chip. The source of the first switch TFT connects to one data testing line or one gate testing line, and the drain of the first switch TFT connects to the corresponding data line or gate line of the display area. In addition, a corresponding TFT-LCD array substrate is also disclosed. The above configuration not only can achieve the narrow-bezel design but also can enhance the yield rate of the TFT-LCD array substrate.