摘要:
A method of fabricating a semiconductor device having a trench gate is provided. First, a semiconductor substrate having a trench etch mask thereon is provided. The semiconductor substrate is etched to form a trench having a sidewall and a bottom using the trench etch mask as a shield. Impurities are doped into the semiconductor substrate through the trench to form a doped region. The semiconductor substrate underlying the trench is etched to form an extended portion. A gate insulating layer is formed on the trench and the extended portion. A trench gate is formed in the trench and the extended portion.
摘要:
A method of fabricating self-aligned recess utilizing asymmetric poly spacer is disclosed. A semiconductor substrate having thereon a first pad layer and second pad layer is provided. A plurality of trenches is embedded in a memory array region of the semiconductor substrate. Each of the trenches includes a trench top layer that extrudes from a main surface of the semiconductor substrate. Asymmetric poly spacer is formed on one side of the extruding trench top layer and is used, after oxidized, as a mask for forming a recess in close proximity to the trenches.
摘要:
A method of fabricating self-aligned recess utilizing asymmetric poly spacer is disclosed. A semiconductor substrate having thereon a first pad layer and second pad layer is provided. A plurality of trenches is embedded in a memory array region of the semiconductor substrate. Each of the trenches includes a trench top layer that extrudes from a main surface of the semiconductor substrate. Asymmetric poly spacer is formed on one side of the extruding trench top layer and is used, after oxidized, as a mask for forming a recess in close proximity to the trenches.
摘要:
A method of fabricating self-aligned recess utilizing asymmetric poly spacer is disclosed. A semiconductor substrate having thereon a first pad layer and second pad layer is provided. A plurality of trenches is embedded in a memory array region of the semiconductor substrate. Each of the trenches includes a trench top layer that extrudes from a main surface of the semiconductor substrate. Asymmetric poly spacer is formed on one side of the extruding trench top layer and is used, after oxidized, as a mask for forming a recess in close proximity to the trenches.
摘要:
A method of fabricating self-aligned recess utilizing asymmetric poly spacer is disclosed. A semiconductor substrate having thereon a first pad layer and second pad layer is provided. A plurality of trenches is embedded in a memory array region of the semiconductor substrate. Each of the trenches includes a trench top layer that extrudes from a main surface of the semiconductor substrate. Asymmetric poly spacer is formed on one side of the extruding trench top layer and is used, after oxidized, as a mask for forming a recess in close proximity to the trenches.
摘要:
A method of fabricating self-aligned gate trench utilizing TTO poly spacer is disclosed. A semiconductor substrate having thereon a pad oxide layer and pad nitride layer is provided. A plurality of trench capacitors are embedded in a memory array region of the semiconductor substrate. Each of the trench capacitors has a trench top oxide (TTO) that extrudes from a main surface of the semiconductor substrate. Poly spacers are formed on two opposite sides of the extruding TTO and are used, after oxidized, as an etching hard mask for etching a recessed gate trench in close proximity to the trench capacitor.
摘要:
A method of fabricating self-aligned gate trench utilizing TTO poly spacer is disclosed. A semiconductor substrate having thereon a pad oxide layer and pad nitride layer is provided. A plurality of trench capacitors are embedded in a memory array region of the semiconductor substrate. Each of the trench capacitors has a trench top oxide (TTO) that extrudes from a main surface of the semiconductor substrate. Poly spacers are formed on two opposite sides of the extruding TTO and are used, after oxidized, as an etching hard mask for etching a recessed gate trench in close proximity to the trench capacitor.
摘要:
A memory device is provided. The memory device includes a substrate, a trench having an upper portion and a lower portion formed in the substrate, a trench capacitor formed in the lower portion of the trench, a collar dielectric layer formed on a sidewall of the trench capacitor and extending away from a top surface of the substrate, a first doping region formed on a side of the upper portion of the trench in the substrate for serving as source/drain, a conductive layer formed in the trench and electrically connected to the first doping region, a top dielectric layer formed on conductive layer, a gate formed on the top dielectric layer, an epitaxy layer formed on both sides of the gate and on the substrate and a second doping area formed on a top of the epitaxy layer for serving as source/drain.
摘要:
A method for forming a semiconductor memory device with a recessed gate is disclosed. A substrate with a pad layer thereon is provided. The pad layer and the substrate are patterned to form at least two trenches. A deep trench capacitor is formed in each trench. A protrusion is formed on each deep trench capacitor, wherein a top surface level of each protrusion is higher than that of the pad layer. Spacers are formed on sidewalls of the protrusions, and the pad layer and the substrate are etched using the spacers and the protrusions as a mask to form a recess. A recessed gate is formed in the recess.
摘要:
A method for forming a memory device with a recessed gate is disclosed. A substrate with a pad layer thereon is provided. The pad layer and the substrate are patterned to form at least two trenches. A deep trench capacitor is formed in each trench. A protrusion is formed on each deep trench capacitor, wherein a top surface level of each protrusion is higher than that of the pad layer. Spacers are formed on sidewalls of the protrusions, and the pad layer and the substrate are etched using the spacers and the protrusions as a mask to form a recess. A recessed gate is formed in the recess.