Abstract:
A method of fabricating self-aligned recess utilizing asymmetric poly spacer is disclosed. A semiconductor substrate having thereon a first pad layer and second pad layer is provided. A plurality of trenches is embedded in a memory array region of the semiconductor substrate. Each of the trenches includes a trench top layer that extrudes from a main surface of the semiconductor substrate. Asymmetric poly spacer is formed on one side of the extruding trench top layer and is used, after oxidized, as a mask for forming a recess in close proximity to the trenches.
Abstract:
A method of fabricating self-aligned gate trench utilizing TTO poly spacer is disclosed. A semiconductor substrate having thereon a pad oxide layer and pad nitride layer is provided. A plurality of trench capacitors are embedded in a memory array region of the semiconductor substrate. Each of the trench capacitors has a trench top oxide (TTO) that extrudes from a main surface of the semiconductor substrate. Poly spacers are formed on two opposite sides of the extruding TTO and are used, after oxidized, as an etching hard mask for etching a recessed gate trench in close proximity to the trench capacitor.
Abstract:
A method for forming a memory device with a recessed gate is disclosed. A substrate with a pad layer thereon is provided. The pad layer and the substrate are patterned to form at least two trenches. A deep trench capacitor device is formed in each trench. The pad layer is recessed until upper portions of the deep trench capacitor devices are revealed. Spacers are formed on sidewalls of the upper portions of the deep trench capacitor devices. The pad layer and the substrate are etched using the spacers and the deep trench capacitor devices as a mask to form a recess, and a recessed gate is formed in the recess.
Abstract:
A deep trench device with a single sided connecting structure. The device comprises a substrate having a trench therein. A buried trench capacitor is disposed in a lower portion of the trench. An asymmetric collar insulator is disposed on an upper portion of the sidewall of the trench. A connecting structure is disposed in the upper portion of the trench, comprising an epitaxial silicon layer disposed on and adjacent to a relatively low portion of the asymmetric collar insulator and a connecting member disposed between the epitaxial silicon layer and a relatively high portion of the asymmetric collar insulator. A conductive layer is disposed between the relatively high and low portions of the asymmetric collar insulator, to electrically connect the buried trench capacitor and the connecting structure. A cap layer is disposed on the connecting structure. A fabrication method for a deep trench device is also disclosed.
Abstract:
A method for forming a stack capacitor includes providing a substrate with a bottom layer, a BPSG layer, a USG layer and a top layer thereon; using the top layer as a hard mask and the substrate as a first etching stop layer to perform a dry etching process to form a tapered trench in the bottom layer, the BPSG layer and the USG layer; removing the top layer to perform a selective wet etching process to partially remove the BPSG layer; depositing conformally a poly-Si layer and filling the trench with a sacrificial layer; removing the poly-Si layer unmasked by the sacrificial layer; using the bottom layer as a second etching stop layer to perform a wet etching process to remove the USG layer and BPSG layer; performing a static drying process; and depositing a dielectric layer and a conductive material to form the stack capacitor.
Abstract:
A checkerboard deep trench dynamic random access memory cell array layout is disclosed, which includes a substrate, a plurality of gate conductor lines disposed on the substrate, a plurality of checkerboard-arranged and staggered deep trench capacitor structures embedded in the substrate under the gate conductor lines, and a plurality of active areas formed in the substrate under the gate conductor lines, alternatively arranged with the deep trench capacitor structures, and electrically connected with an adjacent deep trench capacitor structure. The width of the parts of the gate conductor lines above the deep trench capacitor structures is narrower than that of the parts of the gate conductor lines above the active areas.
Abstract:
A method for forming a recess. The method includes providing a substrate with two protrusions having a first side wall and a second side wall opposite to the first side wall disposed above the substrate, conformally forming a mask layer on the substrate and the protrusions, tilt implanting the mask layer with a first angle using a first implanting mask adjacent to the first side wall of the protrusions, tilt implanting the mask layer with a second angle using a second implanting mask adjacent to the second side wall of the protrusions, removing implanted portions of the mask layer to form a patterned mask layer, and etching the substrate using the patterned mask layer, thereby forming a recess, wherein distances from the recess to the two protrusions, respectively, are different.
Abstract:
A method for forming a recess. The method includes providing a substrate with two protrusions having a first side wall and a second side wall opposite to the first side wall disposed above the substrate, conformally forming a mask layer on the substrate and the protrusions, tilt implanting the mask layer using a first implanting mask adjacent to the first side wall of the protrusions, removing implanted portions of the mask layer to form a patterned mask layer, and etching the substrate using the patterned mask layer, thereby forming a recess.
Abstract:
A method of fabricating a semiconductor device is disclosed. The method of fabricating a semiconductor device provides a semiconductor substrate; forming a gate stack overlying the semiconductor substrate; forming spacers each having a first inner spacer and a second outer spacer on sidewalls of the gate stack; forming a protective layer on sidewalls of the spacers, covering a part of the semiconductor substrate, wherein an etching selectivity of the protective layer is higher than that of the first inner spacer.
Abstract:
A solar cell with high photon utilization includes a substrate, a transparent conductive oxide layer, an anti-reflection coating (ARC) layer and at least one main charge collecting line. The substrate has a front side and a back side. The substrate has a first-type semiconductor layer close to the back side and a second-type semiconductor layer close to the front side. The transparent conductive oxide layer is formed on the front side. The ARC layer is formed on the transparent conductive oxide layer. The main charge collecting line penetrates through the ARC layer and projects from the ARC layer, and the main charge collecting line is electrically connected to the transparent conductive oxide layer. A method of manufacturing the solar cell is also disclosed.