摘要:
A process for producing a transparent glass product having a refractive index gradient by the molecular stuffing method is described. A thallium compound is used as a dopant and, after a concentration gradient of the thallium dopant is formed, the porous glass product is heated up to the temperature region of 350.degree. to 550.degree. C. at a temperature-rising rate of 25.degree. to 150.degree. C./hour in a reducing gas atmosphere and then heat treated above 550.degree. C. in an inert gas atmosphere to collapse micropores in the porous glass product, thereby obtaining a glass product having a refractive index gradient which is transparent and free of light-scattering and coloration. The glass product is suitable as materials (preforms) for optical fibers or materials for rod-shaped lenses, particularly rod-shaped microlenses for microlens arrays and microlenses for coupling an optical fiber and a light source.
摘要:
Refractive index distribution lenses may be made by forming refractive index distribution patterns in surfaces of two substrates. The patterns in the two substrates are made to be matching. Then, these surfaces of the two substrates are placed together with the patterns in the substrates coinciding. If the refractive index distribution patterns in the surfaces form semicylindrical lenses with parallel axes, the substrates may be put together so that the axes of the lenses in one substrate coincide with corresponding axes of semicylindrical lenses in the other substrate to form a rod lens array. If the refractive index distribution patterns in the two substrates are constant in directions parallel to the surfaces of these substrates but vary in the direction perpendicular to the surfaces, the surfaces of these substrates may be put together to form a slab lens.
摘要:
The refractive index distribution in refractive index distribution lenses may be adjusted to better approach an ideal by heating the refractive index distribution lens. When the refractive index distribution lens was created by diffusion of refractive index changing ions into a body, further heating in an environment in which no additional ions can diffuse into the body causes further migration of ions within the body so that its refractive index distribution approaches an ideal.
摘要:
A method of producing a gradient-index lens includes a first step in which a glass body is immersed into a molten salt containing ions which are able to provide a refractive index higher than that of ions constituting the glass body, in order to perform ion diffusion into the glass body. Thereafter, in a second step the glass body obtained from the first step is immersed into a molten salt containing ions which provide a refractive index lower than that of the ions of the molten salt used in the first step. In this way there is formed a predetermined refractive index distribution in the glass body.
摘要:
The present invention provides a gradient refractive index type anamorphic planar microlens which can be utilized for collimating an elliptical beam radiated from a semiconductor laser, or the like, and a method of producing such a lens. To collimate light rays, in which astigmatism exists, it is necessary to use a lens in which the respective focal distances in the directions perpendicular to an optical axis are different from each other. It includes a semiellipsoidal refractive index distribution region formed in a transparent substrate so as to have a major axis and a minor axis on a surface of the transparent substrate.
摘要:
The present invention relates to a process for producing a glass doped with dispersed microcrystallites, which glass is used as a material for sharp cut filter, a material for infrared-transmitting filter, a nonlinear optical material, etc. In the process, high-melting semiconductor microcrystallites are precipitated at a temperature T.sub.1 which is lower than the sag point of a glass to be produced but not lower than the transition temperature of the glass, and then low-melting semiconductor microcrystallites are precipitated at a temperature T.sub.2 which is not higher than the flow point of the glass but not lower than the sag point of the glass to obtain a glass comprising a matrix and microcrystallites of semiconductor solid solution of multilayer structure dispersed in said matrix. This glass has solved, owing to the multilayer structure of the microcrystallites of semiconductor solid solution, the problem of conventional glasses doped with dispersed microcrystallites that the emission from the band edge of microcrystallites of semiconductor solid solution is hidden by the emission from the surface trap level.
摘要:
The present invention relates to a process for producing a glass doped with dispersed microcrystallites, said process comprises:a first step of cooling a glas melt comprising a component to become a glass matrix and a component to become microcrystallites dispersed in said matrix, to a temperature T which is not higher than the flow point of the glass but not lower than the sag point of the glass, anda second step of maintaining the cooled glass at the temperature T to precipitate microcrytallites in the matrix.The glass doped with dispersed microcrystallites produced is used as a material for sharp cut filter, a material for infrared-transmitting filter, a nonlinear optical material, etc.
摘要:
A multi-component glass doped with microparticles of CdS.sub.x Se.sub.y Te.sub.z, which can be used as a material for sharp cut filter, a material for infrared-transmitting filter or a nonlinear optical material. This glass has solved the problems of conventional glasses doped with microparticles, of (a) being low in microparticles concentration and accordingly having a low spectral characteristic when made into a thin filter and (b) being low in microparticles concentration and accordingly having low third-order nonlinearity, by containing microparticles at a high concentration, i.e. 5-50% by weight. The present invention relates to a process for producing the above multi-component glass doped with CdS.sub.x Se.sub.y Te.sub.z microparticles. This has solved the conventional problems that the chalcogen element(s) to constitute the microparticles is (are) vaporized at the step for obtaining a glass melt, by specifying (a) the material to become a glass matrix and (b) the atmosphere used for obtaining a glass melt.
摘要:
The method involves producing a multi-component glass doped with CdS.sub.x Se.sub.y Te.sub.z microparticles. The process has solved the conventional problems that the chalcogen element(s) to constitute the microparticles is (are) vaporized at the step for obtaining a glass melt, by specifying (a) the material to become a glass matrix and (b) the atmosphere used for obtaining a glass melt. The method involves using a mixture of elemental Cd and at least one of the elements S, Se and Te.
摘要:
The present invention relates to a matrix glass composition for glass doped with dispersed CdS.sub.x Se.sub.y Te.sub.z (x+y+z=1) microcrystallites, which contains P.sub.2 O.sub.5 and/or B.sub.2 O.sub.3, and ZnO and/or CdO as essential constituent components, in which the total amount of P.sub.2 O.sub.5 and B.sub.2 O.sub.3 is in a range of from 35 to 65 mol %, and the total amount of ZnO and CdO is in a range of from 65 to 25 mol %. The present invention relates also to glass doped with dispersed microcrystallites which comprises a matrix glass composition as defined above as matrix glass, and CdS.sub.x Se.sub.y Te.sub.z (x+y+z=1) microcrystallites precipitated in the matrix glass.
摘要翻译:本发明涉及掺杂有分散的CdSxSeyTez(x + y + z = 1)微晶的玻璃的玻璃基体玻璃组合物,其包含P 2 O 5和/或B 2 O 3,以及ZnO和/或CdO作为必需组分,其中总量 的P 2 O 5和B 2 O 3在35〜65摩尔%的范围内,ZnO和CdO的总量在65〜25摩尔%的范围内。 本发明还涉及掺杂有分散的微晶的玻璃,其包含如上面定义为基质玻璃的基质玻璃组合物,以及沉淀在基体玻璃中的CdSxSeyTez(x + y + z = 1)微晶。