摘要:
A method for producing a low thermal expansion Ni-base superalloy including the steps of subjecting the alloy to a solution heat treatment under the condition of at a temperature of 1000 to 1200° C. and subjecting the alloy to either a carbide stabilizing treatment for making aggregated carbides on grain boundaries and stabilizing the carbides under the conditions of at a temperature of not less than 850° C. and less than 1000° C. and for 1 to 50 hours, or a carbide stabilizing treatment for making aggregated carbides on grain boundaries and stabilizing the carbides by cooling from the temperature in the solution heat treatment to 850° C. at a cooling rate of 100° C. or less per hour. The method also including the steps of subjecting the alloy to a first aging treatment for precipitating y′ phase under the conditions of at a temperature of 720 to 900° C. and for 1 to 50 hours, and subjecting the alloy to a second aging treatment for precipitating A2B phase under the conditions of at a temperature of 550 to 700° C. and for 5 to 100 hours.
摘要:
The present invention provides a method for producing a low thermal expansion Ni-base superalloy, which includes: preparing an alloy including, by weight %, C: 0.15% or less, Si: 1% or less, Mn: 1% or less, Cr: 5 to 20%, at least one of Mo, W and Re, which satisfy the relationship Mo+½(W+Re): 17 to 27%, Al: 0.1 to 2%, Ti: 0.1 to 2%, Nb and Ta, which satisfy the relationship Nb+Ta/2: 1.5% or less, Fe: 10% or less, Co: 5% or less, B: 0.001 to 0.02%, Zr: 0.001 to 0.2%, a reminder of Ni and inevitable components; subjecting the alloy to a solution heat treatment under the condition of at a temperature of 1000 to 1200° C.; subjecting the alloy to either a carbide stabilizing treatment for making aggregated carbides on grain boundaries and stabilizing the carbides under the conditions of at a temperature of not less than 850° C. and less than 1000° C. and for 1 to 50 hours, or a carbide stabilizing treatment for making aggregated carbides on grain boundaries and stabilizing the carbides by cooling from the temperature in the solution heat treatment to 850° C. at a cooling rate of 100° C. or less per hour; subjecting the alloy to a first aging treatment for precipitating γ′ phase under the conditions of at a temperature of 720 to 900° C. and for 1 to 50 hours; and subjecting the alloy to a second aging treatment for precipitating A2B phase under the conditions of at a temperature of 550 to 700° C. and for 5 to 100 hours.
摘要:
The present invention relates to a low thermal expansion Ni-base superalloy containing, in terms of mass %, C: 0.15% or less; Si: 1% or less; Mn: 1% or less; Cr: 5% or more but less than 20%; at least one of Mo, W and Re, in which Mo+½(W+Re) is 5% or more but less than 20%; W: 10% or less; Al: 0.1 to 2.5%; Ti: 0.10 to 0.95%; Nb+½Ta: 1.5% or less; B: 0.001 to 0.02%; Zr: 0.001 to 0.2%; Fe: 4.0% or less; and a balance of inevitable impurities and Ni, in which the total amount of Al, Ti, Nb and Ta is 2.0 to 6.5% in terms of atomic %. The low thermal expansion Ni-base superalloy of the present invention has a thermal expansion coefficient almost equal to that of 12 Cr ferritic steel, excellent high temperature strength, excellent corrosion and oxidation resistance, good hot-workability, and excellent weldability.
摘要:
The present invention relates to a low thermal expansion Ni-base superalloy containing, in terms of mass %, C: 0.15% or less; Si: 1% or less; Mn: 1% or less; Cr: 5% or more but less than 20%; at least one of Mo, W and Re, in which Mo+½(W+Re) is 5% or more but less than 20%; W: 10% or less; Al: 0.1 to 2.5%; Ti: 0.10 to 0.95%; Nb+½Ta: 1.5% or less; B: 0.001 to 0.02%; Zr: 0.001 to 0.2%; Fe: 4.0% or less; and a balance of inevitable impurities and Ni, in which the total amount of Al, Ti, Nb and Ta is 2.0 to 6.5% in terms of atomic %. The low thermal expansion Ni-base superalloy of the present invention has a thermal expansion coefficient almost equal to that of 12 Cr ferritic steel, excellent high temperature strength, excellent corrosion and oxidation resistance, good hot-workability, and excellent weldability.
摘要:
Disclosed is a welding material for a Ni-based alloy, comprising components expressed as follows: C≦0.05 mass %; 8 mass %≦Cr≦25 mass %; Fe≦4.0 mass %; W≦15 mass %; 5 mass %≦Mo+½(W+Re)≦20 mass %; Co≦20 mass %; 0.01 mass %≦Al
摘要翻译:公开了一种用于Ni基合金的焊接材料,其包含表示如下的组分:C&lt; lE; 0.05质量% 8质量%&nlE; Cr&nlE; 25质量% Fe + nIE; 4.0质量%; W&nlE; 15质量%; 5质量%&amp; NlE; Mo + 1/2(W + Re)&nlE; 20质量% Co&nlE; 20质量%; 0.01质量%&amp; A1; Al <2.0质量%; 0.01质量%; Ti <2.0质量%; Al +½Ti&nlE; 3.0质量%; Nb +½Ta&nlE; 1.5质量% B&nlE; 0.007质量%; Zr&nlE; 0.04质量% 0.01质量%&nlE; Si&NlE; 0.5质量% Mn&nlE; 1.0质量% P&nlE; 0.010质量%; S&nlE; 0.002质量%; O&NlE; 0.005质量% 构成平衡的Ni和不可避免的杂质。
摘要:
There are provided an Ni-based alloy high-chrome steel structure and its manufacturing method capable of joining Ni-based alloys and high-chrome steels by welding, and performing suitable heat treatment, thereby maintaining the strength in the joints. In a manufacturing method of a structure formed by joining together at least two first members formed from Ni-based alloys by welding, and joining a second member formed from high-chrome steels to a member where the first members have been joined together, the manufacturing method includes the steps: joining together the at least two first members formed from Ni-based alloys by welding; performing first-stage aging treatment on a welded joint between the first members, and then, joining the second member formed from high-chrome steels to the member where the first members have been joined together by welding; and then, performing second-stage aging treatment on the welded joint between the first members, and performing heat treatment after welding on a welded portion between the first members and the second member.
摘要:
A turbine rotor which is composed by connecting Ni-based alloy and heat resisting steel such as 12-Cr steel by welding to be able to ensure strength of welded parts and can be used under steam conditions of 700° C. class and method of manufacturing the rotor are also provided. The rotor of the rotating machine into which working fluid of 650° C. or higher is introduced, the rotor being composed of a plurality of members connected by welding such that material of each member is different in accordance with temperature of working fluid which flows contacting the members, wherein the first member(s) is formed from Ni-based alloy having mean linear expansion coefficient of 12.4×10−6/° C.˜14.5×10−6/° C., preferably 14.0×10−6/° C. or smaller within a temperature range from a room temperature to 700° C. and second member(s) is formed from high-chrome steels, and the rotor is composed such that the first member(s) formed from Ni-base alloy is located in a portion which contact to the working fluid of 650° C. or higher.
摘要:
A turbine rotor which is composed by connecting Ni-based alloy and heat resisting steel such as 12-Cr steel by welding to be able to ensure strength of welded parts and can be used under steam conditions of 700° C. class and method of manufacturing the rotor are also provided. The rotor of the rotating machine into which working fluid of 650° C. or higher is introduced, the rotor being composed of a plurality of members connected by welding such that material of each member is different in accordance with temperature of working fluid which flows contacting the members, wherein the first member(s) is formed from Ni-based alloy having mean linear expansion coefficient of 12.4×10−6/° C.˜14.5×10−6/° C., preferably 14.0×10−6/° C. or smaller within a temperature range from a room temperature to 700° C. and second member(s) is formed from high-chrome steels, and the rotor is composed such that the first member(s) formed from Ni-base alloy is located in a portion which contact to the working fluid of 650° C. or higher.
摘要:
There are provided an Ni-based alloy high-chrome steel structure and its manufacturing method capable of joining Ni-based alloys and high-chrome steels by welding, and performing suitable heat treatment, thereby maintaining the strength in the joints. In a manufacturing method of a structure formed by joining together at least two first members formed from Ni-based alloys by welding, and joining a second member formed from high-chrome steels to a member where the first members have been joined together, the manufacturing method includes the steps: joining together the at least two first members formed from Ni-based alloys by welding; performing first-stage aging treatment on a welded joint between the first members, and then, joining the second member formed from high-chrome steels to the member where the first members have been joined together by welding; and then, performing second-stage aging treatment on the welded joint between the first members, and performing heat treatment after welding on a welded portion between the first members and the second member.
摘要:
Provided is a steam turbine facility capable of suppressing the possibility of vibration occurrence and a drastic increase in facility cost, thereby realizing an increase in size of the facility, even if steam conditions of 650° C. or higher are adopted. In a steam turbine facility including a high-pressure turbine, an intermediate-pressure turbine, and a low-pressure turbine, the high-pressure turbine is separated into a first high-pressure turbine part on a high-temperature and high-pressure side and a second high-pressure turbine part on a low-temperature and low-pressure side, the intermediate-pressure turbine is separated into a first intermediate-pressure turbine part on the high-temperature and high-pressure side and a second intermediate-pressure turbine part on the low-temperature and low-temperature side, the first high-pressure turbine part and the first intermediate-pressure turbine part are integrated to form a first integrated part, the second high-pressure turbine part and the second intermediate-pressure turbine part are integrated to form a second integrated part, at least any one of the rotors and casings of the turbines into which steam with a temperature of 650° C. or higher is introduced are constructed by joining together a plurality of members formed from Ni-based alloy through welding as a whole.