摘要:
The present invention relates to an improvement for a light guide structure for light guide plate so as to resolve the problems of illumination and degree of uniformity of the conventional light guide plate. The light guide plate of the present invention has line-shaped passages which are located in parallel with the direction of light from the light emitting diodes. The depth of the passages becomes deeper gradually from one end to the other, wherein the source of light is located close to the shallow end, thereby the light from the light emitting diodes is transmitted to the remote areas that are located far from the source of light. The present invention increases the total illumination and the degree of uniformity, and the efficiency of the light emitting diode is also increased.
摘要:
The high efficiency light emitting diode apparatus mainly comprises a connector, a heat dissipating body, a light generator, a central venting portion, and a transparent casing. This connector has a flow guider, a flow chamber and a vent. The light generator contains several LEDs. The heat dissipating body includes an inner passage and an outer passage. The central venting portion has a central channel. An inner flow path and an outer flow path are formed. So, the heat dissipating effect of the flow paths is excellent. The structure forming two flow paths can enhance the heat dissipating effect. The auxiliary element can strengthen the overall illuminating effect. Plus, the auxiliary element can make the light more uniformly.
摘要:
A semiconductor structure and methods for forming the same are provided. The semiconductor structure includes a semiconductor substrate; a gate stack on the semiconductor substrate; a SiGe region in the semiconductor substrate and adjacent the gate stack, wherein the SiGe region has a first atomic percentage of germanium to germanium and silicon; and a silicide region over the SiGe region. The silicide region has a second atomic percentage of germanium to germanium and silicon. The second atomic percentage is substantially lower than the first atomic percentage.
摘要:
A system for monitoring oxidant concentration in a chemical mechanical polishing process, including a spectrometer and a central controller. The spectrometer is coupled to a conduit for supplying slurry between a slurry supply tub and a polishing table. The spectrometer is used to detect the oxidant concentration of the slurry. The central controller is coupled to the spectrometer, the slurry supply tub and the polishing table. The central controller is used to adjust the composition of the slurry in the slurry supply tub and the polishing condition of the polishing table according to the oxidant concentration of the slurry obtained from a signal transmitted by the spectrometer.
摘要:
A method includes forming a gate stack over a semiconductor substrate, and forming a first silicon germanium (SiGe) region in the semiconductor substrate and adjacent the gate stack. The first SiGe region has a first atomic percentage of germanium to germanium and silicon. A second SiGe region is formed over the first SiGe region. The second SiGe region has a second atomic percentage of germanium to germanium and silicon. The second atomic percentage is lower than the first atomic percentage, wherein the first and the second SiGe regions form a source/drain stressor of a metal-oxide-semiconductor (MOS) device.
摘要:
A semiconductor structure and methods for forming the same are provided. The semiconductor structure includes a semiconductor substrate; a gate stack on the semiconductor substrate; a SiGe region in the semiconductor substrate and adjacent the gate stack, wherein the SiGe region has a first atomic percentage of germanium to germanium and silicon; and a silicide region over the SiGe region. The silicide region has a second atomic percentage of germanium to germanium and silicon. The second atomic percentage is substantially lower than the first atomic percentage.
摘要:
A method includes forming a gate stack over a semiconductor substrate, and forming a first silicon germanium (SiGe) region in the semiconductor substrate and adjacent the gate stack. The first SiGe region has a first atomic percentage of germanium to germanium and silicon. A second SiGe region is formed over the first SiGe region. The second SiGe region has a second atomic percentage of germanium to germanium and silicon. The second atomic percentage is lower than the first atomic percentage, wherein the first and the second SiGe regions form a source/drain stressor of a metal-oxide-semiconductor (MOS) device.
摘要:
A device for cleaning a pad conditioner that comprises a cleaning agent supply for providing a cleaning agent for cleaning a pad conditioner including a conditioning surface, a pad including an abrasive surface, and a pump rotating the pad with respect to the pad conditioner for rubbing the abrasive surface of the pad against the conditioning surface of the pad conditioner.
摘要:
A wafer carrier structure for a chemical-mechanical polishing device. The wafer carrier structure includes a holder and a slurry supply pipeline. The slurry supply pipeline is attached to the side of the holder such that a portion of the supply pipeline near the outlet end is either parallel or perpendicular to the sidewall of the holder.
摘要:
A method of forming a damascene structure. A dielectric layer is formed over a substrate. The dielectric layer is a silicon oxynitride layer having a refractivity between 1.55 and 1.74. An opening is formed in the dielectric layer. A metallic layer that covers the substrate and completely fills the opening is formed. A chemical-mechanical polishing operation is conducted to remove excess metallic material outside the opening using the dielectric layer as a polishing stop layer. The dielectric layer has a polishing rate less than that of the metallic layer.