摘要:
A gain clamped optical device includes a semiconductor stack and a resonant cavity configured to emit stimulated light. A window created in the optical device is configured to emit the stimulated light in an LED mode.
摘要:
A gain clamped optical device includes a semiconductor stack and a resonant cavity configured to emit stimulated light. A window created in the optical device is configured to emit the stimulated light in an LED mode.
摘要:
Embodiments of the present invention are directed to photovoltaic cells configured with two or more nanowire-based, light-absorption layers, each layer capable of absorbing a different portion of the electromagnetic spectrum. In one embodiment, a photovoltaic cell comprises a substrate configured with a first planar surface, a second planar surface opposite the first planar surface, and an opening. The photovoltaic cell includes a first photovoltaic cell disposed on the first planar surface and having a first set of nanowires extending over the opening. The photovoltaic cell includes a second photovoltaic cell disposed on the second planar surface and having a second set of nanowires extending over the opening opposite the first set of nanowires.
摘要:
Embodiments of the present invention are directed to photovoltaic cells configured with two or more nanowire-based, light-absorption layers, each layer capable of absorbing a different portion of the electromagnetic spectrum. In one embodiment, a photovoltaic cell comprises a substrate configured with a first planar surface, a second planar surface opposite the first planar surface, and an opening. The photovoltaic cell includes a first photovoltaic cell disposed on the first planar surface and having a first set of nanowires extending over the opening. The photovoltaic cell includes a second photovoltaic cell disposed on the second planar surface and having a second set of nanowires extending over the opening opposite the first set of nanowires.
摘要:
One embodiment of the present invention relates to a light-emitting diode having one or more light-emitting layers, a pair of electrodes disposed on the light-emitting diode so that an operating voltage can be applied to generate light from the one or more light-emitting layers, and at least one external electrode in electronic communication with the one or more light-emitting layers. Applying an appropriate voltage to the at least one external electrodes at about the time the operating voltage is terminated extracts excess electrons from the one or more light-emitting layers and reduces the duration of electron-hole recombination during the time period over which the operating voltage is turned off.
摘要:
One embodiment of the present invention relates to a light-emitting diode having one or more light-emitting layers, a pair of electrodes disposed on the light-emitting diode so that an operating voltage can be applied to generate light from the one or more light-emitting layers, and at least one external electrode in electronic communication with the one or more light-emitting layers. Applying an appropriate voltage to the at least one external electrodes at about the time the operating voltage is terminated extracts excess electrons from the one or more light-emitting layers and reduces the duration of electron-hole recombination during the time period over which the operating voltage is turned off.
摘要:
Embodiments of the present invention are directed to beamsplitters that include optical elements to correct for beam offset. In one embodiment, a beamsplitter includes a first plate having two approximately parallel and opposing planar surfaces and a partially reflective layer coating one of the planar surfaces, and a compensator plate having two approximately parallel and opposing planar surfaces. The compensator plate is positioned so that an incident beam of light passing through the compensator plate acquires a first beam offset. Subsequently, the incident beam of light with the first beam offset passing through the first plate is split into a reflected beam and a transmitted beam by the partially reflective layer where the transmitted beam has a second beam offset that substantially cancels the first beam offset such that the transmitted beam is approximately parallel to and aligned with the incident beam.
摘要:
An electrical interconnect includes first and second electrical contacts to be electrically connected, each electrical contact having a plurality of electrically conductive nanowires extending outwardly from a respective electrical contact; and the nanowires of the first electrical contact configured to mesh with the nanowires of the second electrical contact such that an electrical connection is established between the first electrical contact and the second electrical contact. A method for interconnecting electrical contacts includes meshing a first array of electrically conductive nanowires extending from a first electrical contact with a second array of electrically conductive nanowires extending from a second electrical contact so as to establish an electrical connection between said first and second electrical contacts.
摘要:
Embodiments of the present invention are directed to photovoltaic cells that include a surface relief grating to couple out-of-plane light into the leaky slab modes of the photovoltaic cells. In one embodiment of the present invention, a photovoltaic cell comprises a bottom electrode, a light-absorption layer disposed on the bottom electrode, and a top electrode disposed on the light-absorption layer. The top electrode is configured with a grating that enables light incident on the grating to be scattered into the light-absorption layer and traps incident light with particular polarizations and incident angles in the grating to interact with the light-absorption layer.
摘要:
Embodiments of the present invention are directed to beamsplitters that include optical elements to correct for beam offset. In one embodiment, a beamsplitter includes a first plate having two approximately parallel and opposing planar surfaces and a partially reflective layer coating one of the planar surfaces, and a compensator plate having two approximately parallel and opposing planar surfaces. The compensator plate is positioned so that an incident beam of light passing through the compensator plate acquires a first beam offset. Subsequently, the incident beam of light with the first beam offset passing through the first plate is split into a reflected beam and a transmitted beam by the partially reflective layer where the transmitted beam has a second beam offset that substantially cancels the first beam offset such that the transmitted beam is approximately parallel to and aligned with the incident beam.