摘要:
A vehicle light can improve the visibility (noticeability) for pedestrians, roadside obstructs, other vehicles and the like in actual traffic environments. The vehicle light can be configured to project light beams with a predetermined white color, and can include a light source with a color temperature range of 4500 K to 7000 K. The light source emits light beams including four color light beams represented by four coordinate values of predicted colors including red, green, blue and yellow in the a* b* coordinate system corresponding to the CIE 1976 L*a*b* color space. The four coordinate values in the a* b* coordinate system can be encompassed by respective circle areas having a radius of, for example, 5, and each having center coordinate values of (41.7, 20.9) for red, (−39.5, 14.3) for green, (8.8, −29.9) for blue and (−10.4, 74.2) for yellow, for example.
摘要翻译:在实际交通环境中,车灯可以提高行人,路边障碍物,其他车辆等的能见度(注意力)。 车辆灯可以被配置为投射具有预定白色的光束,并且可以包括具有4500K至7000K的色温范围的光源。光源发射包括由四个坐标值表示的四个彩色光束的光束 在与CIE 1976 L * a * b *颜色空间相对应的a * b *坐标系中,包括红色,绿色,蓝色和黄色的预测颜色。 a * b *坐标系中的四个坐标值可以由具有例如5的半径的各个圆形区域包围,并且每个具有红色的中心坐标值(41.7,20.9),(-39.5,14.3) 绿色,(8.8,-29.9)为蓝色,(-10.4,74.2)为黄色。
摘要:
A vehicle light can improve the visibility (noticeability) for pedestrians, roadside obstructs, other vehicles and the like in actual traffic environments. The vehicle light can be configured to project light beams with a predetermined white color, and can include a light source with a color temperature range of 4500 K to 7000 K. The light source emits light beams including four color light beams represented by four coordinate values of predicted colors including red, green, blue and yellow in the a* b* coordinate system corresponding to the CIE 1976 L*a*b* color space. The four coordinate values in the a* b* coordinate system can be encompassed by respective circle areas having a radius of, for example, 5, and each having center coordinate values of (41.7, 20.9) for red, (−39.5, 14.3) for green, (8.8, −29.9) for blue and (−10.4, 74.2) for yellow, for example.
摘要翻译:在实际交通环境中,车灯可以提高行人,路边障碍物,其他车辆等的能见度(注意力)。 车辆灯可以被配置为投射具有预定白色的光束,并且可以包括具有4500K至7000K的色温范围的光源。光源发射包括由四个坐标值表示的四个彩色光束的光束 在与CIE 1976 L * a * b *颜色空间相对应的a * b *坐标系中,包括红色,绿色,蓝色和黄色的预测颜色。 a * b *坐标系中的四个坐标值可以由具有例如5的半径的各个圆形区域包围,并且每个具有红色的中心坐标值(41.7,20.9),(-39.5,14.3) 绿色,(8.8,-29.9)为蓝色,(-10.4,74.2)为黄色。
摘要:
A vehicle light can include a matrix type semiconductor light source, an imaging lens and a reflector. The light source can project an enlarged matrix light on the reflector via the imaging lens. The reflector can include a matrix reflex surface having horizontal curvatures. Each of the horizontal curvatures of the reflex surfaces arranged in columns can be configured such that the corresponding column light is extended gradually in a wider range as the corresponding column light approaches from a central column light toward both edge column lights. Accordingly, a magnification of light projected from the reflector can become gradually large as approaching from the central column toward both edge columns. Thus, the disclosed subject matter can provide vehicle headlights that can form favorable light distribution patterns for a low beam and a high beam having a bright central portion in a wide range of a smooth light distribution pattern.
摘要:
Illumination devices (7a) and (7b) which irradiate light having a wavelength of 1.1 μm or less are arranged on a front surface and a rear surface of a cover (8) of a dicing device (1). After a wafer is placed on a dicing stage (3), when the wafer is diced by a blade (4a) attached to a spindle (5), light is irradiated on an entire surface of an upper surface (element forming surface) of the wafer by the illumination devices (7a) and (7b). At this time, an illuminance of light on the wafer is set at 70 lux or more and 2000 lux or less. By this means, during a dicing operation, an area to be a light-shielded area by the spindle (5) or the like is not present on the wafer.
摘要:
Illumination devices (7a) and (7b) which irradiate light having a wavelength of 1.1 μm or less are arranged on a front surface and a rear surface of a cover (8) of a dicing device (1). After a wafer is placed on a dicing stage (3), when the wafer is diced by a blade (4a) attached to a spindle (5), light is irradiated on an entire surface of an upper surface (element forming surface) of the wafer by the illumination devices (7a) and (7b). At this time, an illuminance of light on the wafer is set at 70 lux or more and 2000 lux or less. By this means, during a dicing operation, an area to be a light-shielded area by the spindle (5) or the like is not present on the wafer.
摘要:
Illumination devices (7a) and (7b) which irradiate light having a wavelength of 1.1 μm or less are arranged on a front surface and a rear surface of a cover (8) of a dicing device (1). After a wafer is placed on a dicing stage (3), when the wafer is diced by a blade (4a) attached to a spindle (5), light is irradiated on an entire surface of an upper surface (element forming surface) of the wafer by the illumination devices (7a) and (7b). At this time, an illuminance of light on the wafer is set at 70 lux or more and 2000 lux or less. By this means, during a dicing operation, an area to be a light-shielded area by the spindle (5) or the like is not present on the wafer.
摘要:
A method for producing a fuel cell electrode catalyst, including a step (I) of bringing an aqueous solution of a transition metal compound (1) into contact with ammonia and/or ammonia water to generate a precipitate (A) containing an atom of the transition metal, a step (II) of mixing at least the precipitate (A), an organic compound (B), and a liquid medium (C) to obtain a catalyst precursor liquid, and a step (IV) of subjecting the solid in the catalyst precursor liquid to heat treatment at a temperature of 500 to 1200° C. to obtain an electrode catalyst; a portion or the entirety of the transition metal compound (1) being a compound containing a transition metal element of group 4 or group 5 of the periodic table; and the organic compound (B) being at least one selected from sugars and the like.
摘要:
A containment vessel has an inner shell covering a reactor pressure vessel and an outer shell forming an outer well which is a gas-tight space covering the horizontal outer periphery of the inner shell. The inner shell has a first cylindrical side wall surrounding the horizontal periphery of the reactor pressure vessel, a containment vessel head which covers the upper part of the reactor pressure vessel, and a first top slab connecting in a gas-tight manner the periphery of the containment vessel head and the upper end of the first cylindrical side wall. The outer shell has a second cylindrical side wall surrounding the outer periphery of the first cylindrical side wall, and also has a second to slab connecting in a gas-tight manner the vicinity of the upper end of the second cylindrical side wall and the first cylindrical side wall.
摘要:
A power supply device supplying power to a device via a power line is provided, where the power supply device includes a first voltage generation unit configured to generate and supply a first direct voltage to the power line, a second voltage generation unit configured to generate and supply a second direct voltage lower than the first direct voltage to the power line, a measurement unit configured to measure a voltage of the power line, a control unit configured to control supply of the first direct voltage with the first voltage generation unit after starting supply of the second direct voltage with the second voltage generation unit, and a determination unit configured to determine a state of the power supply device based on the measured voltage and a first threshold value after starting the supply of the second direct voltage.
摘要:
A method for producing a fuel cell electrode catalyst including a metal element selected from aluminum, chromium, manganese, iron, cobalt, nickel, copper, strontium, yttrium, tin, tungsten, and cerium and having high catalytic activity through heat treatment at comparatively low temperature. The method including: a step (1) of mixing at least a certain metal compound (1), a nitrogen-containing organic compound (2), and a solvent to obtain a catalyst precursor solution, a step (2) of removing the solvent from the catalyst precursor solution, and a step (3) of heat-treating a solid residue, obtained in the step (2), at a temperature of 500 to 1100° C. to obtain an electrode catalyst; a portion or the entirety of the metal compound (1) being a compound containing, as the metal element, a metal element M1 selected from aluminum, chromium, manganese, iron, cobalt, nickel, copper, strontium, yttrium, tin, tungsten, and cerium.