摘要:
A method is provided for manufacturing a composite conductor having a copper or copper alloy core, a conductive ceramic intermediate layer and a nickel outer layer, and being suitable for high temperature applications. The method involves first preparing the copper or copper alloy core, then extruding a mixture of conductive ceramic power and a binder around the core to form the ceramic layer, and then applying a nickel tape as an outer covering. As further steps, a seam of the nickel tape covering is welded, the product is passed through a cladding die, and finally the product is drawn to form the desired conductor with a preselected diameter. Optionally, a further ceramic layer can be applied around the nickel layer.
摘要:
An insulated electrical conductor wire has a conductor core containing Ni or Ni alloy at least in its outer surface, an oxide layer of Ni or Ni alloy formed by oxidation treatment of the outer surface of the conductor, and an insulating inorganic compound outer layer formed on the oxide layer of Ni or Ni alloy. The insulating inorganic outer layer is intimately bonded to the oxide layer and provides an improved heat resistance and insulability.
摘要:
An electrically insulated wire which has an electrical conductor formed of a base material having an outer conductor surface and a chromium oxide containing layer formed on the outer conductor surface. An electrically insulating nitride layer is provided on the chromium oxide containing layer. The electrically insulated wire has a high insulability at high-temperatures, an excellent flexibility and does not form a gas adsorption source.
摘要:
An insulated wire has a conductor, a first insulating metal oxide layer which is formed around the conductor, and a second insulating metal oxide layer, containing ceramic particles mixed by addition and formed around the first insulating metal oxide layer. The so formed insulating metal oxide layers are produced by changing a precursor of a metal oxide into the ceramic state. This change is caused by a method such as a sol-gel method or a thermal decomposition method. The mixed ceramic particles are more preferably in the form of fine platelets. This insulated wire has an excellent flexibility, emits no gas, can maintain its insulation even at a high temperature, and has a high breakdown voltage.
摘要:
A method of manufacturing a ceramic insulated wire involves preparing an extrudable gel compound formed by dissolving a metal-organic compound in a solvent and adding at least one thermoplastic polymer or its monomer to the mixture to make the gel compound extrudable. The so prepared extrudable gel compound is then extruded around the outer periphery of a conductor for coating the conductor with a gel coating. Thereafter a heat treatment is performed for sintering the gel compound to form a ceramic coating.
摘要:
A method of manufacturing an insulated wire coil is performed by covering the outer peripheral surface of a conductor with a mineral insulating layer, then coating the mineral insulating layer with a precursor solution of an oxide insulating material prior to winding the wire into a coil. After completion of the coil the precursor solution is dried.
摘要:
A ceramic insulated wire has a conductor core of copper or copper alloy, a stainless steel layer around the conductor core and a chromium oxide film (2A) around the stainless steel layer. The chromium oxide film (2A) is surrounded by an outer ceramic insulator formed by a vapor deposition method. Cladding the conductor core with stainless steel is done by inserting the core lengthwise into a stainless steel pipe, plastically working the resulting composite body to provide a desired size, and oxidizing the stainless steel which contains sufficient chromium for the formation of the chromium oxide film to have a thickness within the range of 10 nm to 1000 nm. The outer ceramic insulator formed by vapor deposition is made of Al.sub.2 O.sub.3, SiO.sub.2, AlN and Si.sub.3 N.sub.4 which provide an excellent heat resistance while the chromium oxide film substantially increases the bonding strength.
摘要翻译:陶瓷绝缘线具有铜或铜合金的导体芯,围绕导体芯的不锈钢层和围绕不锈钢层的氧化铬膜(2A)。 氧化铬膜(2A)由通过气相沉积法形成的外部陶瓷绝缘体包围。 通过将芯体纵向插入不锈钢管中,对所得的复合体进行塑性加工以提供所需的尺寸,并将含有足够的铬的不锈钢氧化以形成氧化铬膜,从而实现不锈钢包层 具有10nm至1000nm范围内的厚度。 通过气相沉积形成的外部陶瓷绝缘体由Al 2 O 3,SiO 2,AlN和Si 3 N 4制成,其提供优异的耐热性,同时氧化铬膜显着增加粘合强度。
摘要:
A metal oxide layer is provided around a thermocouple element. The metal oxide layer is formed by preparing a sol, in which particulates of a metal oxide are dispersed, by a sol-gel method, dipping the thermocouple element in this sol, energizing the thermocouple element as a cathode for bonding the precursor particulates of the metal oxide thereto, and heat treating the same. The thermocouple according to the present invention is compact with a thin insulating layer, excellent in flexibility, and provides no gas adsorption source.
摘要:
A metal oxide layer is provided around a thermocouple element. The metal oxide layer is formed by preparing a sol, in which particulates of a metal oxide are dispersed, by a sol-gel method, dipping the thermocouple element in this sol, energizing the thermocouple element as a cathode for bonding the precursor particulates of the metal oxide thereto, and heat treating the same. The thermocouple according to the present invention is compact with a thin insulating layer, excellent in flexibility, and provides no gas adsorption source.
摘要:
A heat and oxidation resistant electrically conductive composite conductor has a core (1) made of copper or a copper alloy, an electrically conductive ceramics layer (2) around the core (1), and a nickel layer (3) on the exterior of the electrically conductive ceramics layer (2). Such a conductor is produced by coating the outer surface of the core copper alloy binder and covering the coated core with a nickel tape under an atmosphere of an inert gas or a reducing gas, welding the seam of the tape, clading the so formed conductor by a cladding die, and drawing the clad conductor. The composite conductor has a high conductivity which is not reduced even when the conductor is exposed to a high temperature operating condition.